
                                             Team: 

                                            

                       Waves and Modes 
 

Part I.   Standing Waves 
 

Whenever a wave (sound, heat, light, ...) is confined to a finite region of space (string, pipe, 

cavity, ... ) , something remarkable happens − the space fills up with a spectrum of vibrating 

patterns called “standing waves”.     Confining a wave “quantizes” the frequency.  
 

Standing waves explain the production of sound by musical instruments and the existence of 

stationary states (energy levels) in atoms and molecules.  Standing waves are set up on a guitar 

string when plucked, on a violin string when bowed, and on a piano string when struck.  They are 

set up in the air inside an organ pipe, a flute, or a saxophone.  They are set up on the plastic 

membrane of a drumhead, the metal disk of a cymbal, and the metal bar of a xylophone.  They 

are set up in the “electron cloud” of an atom and the “quark cloud” of a proton. 
 

Standing waves are produced when you ring a bell, drop a coin, blow across an empty soda 

bottle, sing in a shower stall, or splash water in a bathtub.  Standing waves exist in your mouth 

cavity when you speak and in your ear canal when you hear.  Electromagnetic standing waves fill 

a laser cavity and a microwave oven.  Quantum-mechanical standing waves fill the space inside 

carbon nanotubes and quantum computers. 
 

A.   Modes 
 

A mass on a spring has one natural frequency at which it freely oscillates up and down.  A 

stretched string with fixed ends can oscillate up and down with a whole spectrum of frequencies 

and patterns of vibration.  

 

    Mass on Spring         String with Fixed Ends 
(mass m, spring constant k)   (length L, tension F, mass density µ) 
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These special “Modes of Vibration” of a string are called STANDING WAVES or NORMAL 

MODES.  The word “standing wave” comes from the fact that each normal mode has “wave” 

properties (wavelength λ , frequency f), but the wave pattern (sinusoidal shape) does not travel 

left or right through space − it “stands” still.  Each segment (λ/2 arc) in the wave pattern simply 

oscillates up and down.  During its up-down motion, each segment sweeps out a “loop”. 

 

 

 

 

 

  
 

 

All points on the string oscillate at the same frequency but with different amplitudes.  Points that 

do not move (zero amplitude of oscillation) are called nodes.  Points where the amplitude is 

maximum are called antinodes.   The mathematical equation of a standing wave is y(x,t) = 

sin(2πx/λ) cos(2πft).  The “shape” term sin(2πx/λ) describes the sinusoidal shape of the wave 

pattern of wavelength λ.  The “flip-flop” term cos(2πft) describes the up-down oscillatory motion 

of each wave segment at frequency f.   Each mode is characterized by a different λ and f. 

 

B. Harmonics 
 

The simplest normal mode, where the string vibrates in one loop, is labeled n = 1 and is called 

the fundamental mode or the first harmonic. The second mode (n = 2), where the string 

vibrates in two loops, is called the second harmonic.  The n
th
 harmonic consists of n vibrating 

loops.  The set of all normal modes {n = 1, 2, 3, 4, 5, ... } is the harmonic spectrum.  The 

spectrum of natural frequencies is {f1 , f2 , f3 , f4 , f5 , ...  }.  Note that the frequency fn of mode n 

is simply a whole-number multiple of the fundamental frequency: fn = nf1 .  The mode with 3 

loops vibrates three times as fast as the mode with 1 loop.   
 

Harmonics are the basis of  HARMONY  in music.  The sectional vibrations of a string as one 

whole, two halves, three thirds, and so on, are very special because these vibrations produce 

musical tones that sound the “most pleasant” when sounded together, i.e. they represent the most 

harmonious combination of sounds.  This explains the origin of the word “harmonic”. 
 

Exercise:  Sketch the 6
th
 harmonic of the string.   

 

 

 

 

 

If the frequency of the 5
th
 harmonic is 100 Hz, what is the frequency of the 6

th
 harmonic?   

 

 

 

 

 

If the length of the string is 3 m ,  what is the wavelength of the 6
th
 harmonic? 

 

 

A standing wave is a system of fixed nodes 

(separated by λ/2) and vibrating loops 

(frequency f).  In short, a standing wave is a 

“flip-flopping” sine curve. 

 

Node 
 Node  Node 

  λ/2  λ/2 

f  
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C.  Creating a  Mode 
 

In general, when you pluck a string, you excite an infinite number of harmonic modes (we will 

discuss this later).  How do you excite only one of the modes?   There are three different 

methods: 
 

1.  The Mathematician Method:  “Sine Curve Initial Condition” 
 

If you pull each mass element of a stretched string away from  

equilibrium (flat string) so that the string forms the shape of a 

sine curve, and then let go, the whole string will vibrate in one 

normal mode pattern.  If you start with any other initial shape −  

one that is not sinusoidal − then the motion of the string will be 

made up of different modes.  Starting out with an exact sine-curve 

shape is not easy to do – you need some kind of fancy contraption. 

 

2.   The Musician Method:  “Touch and Pluck” 
 

Guitar players and violin players do this all the time. They gently 

touch the string at one point (where you want the node to be) and 

pluck the string at another point (antinode) to make a “loop”. The 

oscillation (up and down motion) of the plucked loop will “drive”  

the rest of the string to form additional equal-size loops which  

oscillate up and down at the same frequency as the driving loop. 

 

3.  The Physicist Method:  “Resonance” 
 

If you gently shake (vibrate) the end of a string up and  

down, a wave will travel to the right (R), hit the fixed end,  

and reflect back to the left (L).  If you shake at just the right 

“resonance” frequency − one that matches one of the  

natural frequencies of the string − then the two traveling  

waves (R and L) will combine to produce a standing  

wave of large amplitude: R + L  =  STANDING WAVE. 
  
 

D. Resonance 
 

Since RESONANCE is one of the most important concepts in science, we will focus on this 

method.  Resonance phenomena are everywhere: tuning a radio, making music, shattering a 

crystal glass with your voice, imaging the body with an MRI machine,  picking cherries, 

designing lasers, engineering bridges, skyscrapers, and machine parts, etc.  Consider pushing a 

person in a swing.  If the frequency of your hand (periodic driving force) matches the natural 

frequency of the swing, then the swing will oscillate with large amplitude.  It is a matter of 

timing , not strength.   A sequence of “gentle pushes” applied at just the “right time” − in 

perfect rhythm with the swing − will cause a dramatic increase in the amplitude of the swing.  A 

small stimulus gets amplified into a LARGE response. 

 

Experiment:   Shake a Slinky ,  Make a Mode 
 

Go into the hallway.  Stretch the slinky (in the air, not on the floor) so that its end-to-end length 

is 4 to 5 m.  It is okay if the slinky sags a little.  Keep one end fixed.  GENTLY shake (vibrate) 

the other end side-to-side  (side-to-side is easier than up-and-down).   DO NOT shake with a large 

  Pull   Pull 

   Pull 

  Touch   Pluck 

  R 

 R+L  

 L 
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force or large amplitude.  Remember that resonance is all in the timing, not the force!  Shake at 

just the right frequency to produce the two-loop (n = 2) normal mode.  When you have “tuned 

into” this n = 2 state, take special note: 

 

        You are now RESONATING with the coil.    You and the coil are “one” ! 

 

Your shaking hand is perfectly in-sync with the coil’s very own natural vibration.   The 

frequency of your hand matches f2 of the coil.  Note how the distance Dhand that your hand moves 

back and forth is much smaller than the distance Dcoil that the coil moves back and forth.  The 

driven slinky system has the ability to amplify a small input (Dhand) into a large output (Dcoil).  

This is the trademark of resonance: a weak driving force (hand moves a little) causes a powerful 

motion (coil moves a lot).  Estimate the values of Dhand and Dcoil by simply observing the motions 

of your hand and the coil when you are resonating with the coil.  Compute the “Amplification 

Factor” for this driven coil system. 

 

 

 

 

 
 

 

 

 

              Amplification Factor :    Dcoil / Dhand   =   __________  . 

 

 

 

 

 Part II.  Music,  Guitar,  &  Fourier 
 

One of the most far-reaching principles in theoretical physics is this: 

 

  The general motion of any vibrating system can be represented as a sum of mode motions. 

 

Reducing the complex “generic whole” into a set of simple “harmonic parts” provides deep 

insight into nature.  Therefore, normal modes are important for two reasons: 
 

(1)  The motion of each mode is SIMPLE , being described by a simple harmonic oscillator (trig)   

       function: cos(2ππππ 
ft) . 

 

(2)  The set of modes serves as a BASIS for any kind of wave/vibrational motion: 

 

         Any Motion         =           Sum      of      Mode    Motions 

 

 

 

 

 

 

= 

Dhand  =  ________ cm  
Dcoil  =  ________ cm  

   +    • • •   +   +   + 
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100 Hz 

    200 Hz 

      300 Hz 

  100 Hz 

A.  Plucked String  =  Mixture of Harmonic Parts 
 

Suppose you pluck the “A-string” of a guitar and look closely at the shape of the vibrating string.  

You will see the fundamental mode (1st harmonic) “flip flopping” at the rate of about 100 

vibrations per second.  At such a high frequency, the string looks like one big blurred loop: 
 

 

 

 

 

 

 

 
 

However, what you see is NOT THE WHOLE PICTURE !   In reality, the string is vibrating 

with a whole spectrum of normal mode shapes and frequencies all at the same time: 1-loop @ 

100 Hz , 2-loop @ 200 Hz , 3-loop @ 300 Hz , 4-loop @ 400 Hz , etc.  The “actual” picture of a 

plucked string (showing only the first three harmonics) is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

It is difficult to see the 2-loop, 3-loop, 4-loop vibrations , …  and to hear the corresponding 

overtones 2f , 3f , 4f , …  because the higher-harmonic amplitudes are usually much smaller than 

the 1
st
 harmonic amplitude.  The 1-loop vibration is the shape you tend to see (and the tone you 

tend to hear) because it is the “loudest” component in the harmonic mixture – the one that 

“shakes” the air and your eardrum the most.   If you listen carefully in a quiet room (no 

background noise) to the plucked A-string of a guitar, you can hear the first overtone 200 Hz 

(second harmonic) which is one “Octave” above the fundamental tone 100 Hz.   Some musicians 

can hear several overtones. 

 

PHYSICS OF MUSIC FACT:  When a guitar, piano, violin, and saxophone play the same note   

(middle C for example) at the same loudness, you hear four different sounds.  Why ?   Although 

the frequency of the fundamental tone (f1 = 262 Hz) is the same, the intensities of the overtones 

(f2 = 524 Hz , f3 = 786 Hz , f4 = 1048 Hz ,…) are different for each instrument. 

 

   100 Hz 

   200 Hz 

     300 Hz 

             Initial Pluck  
    Pull string at one point and release 

             Resulting Motion  
                   “Flip-Flopping Loop” 

   200 Hz 

     300 Hz      300 Hz 

  Sound Waves (produced by vibrating 

         loops colliding with air molecules) 

 

    In the language of Music, when you pluck a guitar string, the resulting musical tone  

    consists of the Fundamental Tone (frequency f) together with a whole series of higher      

    pitched and generally fainter Overtones (2f , 3f , 4f , etc.) 
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Thought Experiment:  A simple proof of  “Plucked String  =  Mixture of Harmonic Modes”  
 

A plucked guitar string is vibrating in the lowest two modes: 100 Hz fundamental and 200 Hz 

overtone (octave).  Suppose you lightly touch this vibrating string at its exact midpoint.  What 

happens?  Draw a picture of the plucked string before and after the touch: 
 

 

 
 

 

 

 

 
 

What happens to the fundamental loop when you touch the string? 

 

 
What tone do you hear after the touch? 

 

 
 

B.   Fourier’s Theorem.    Harmonic Analysis. 
 

How do you “really know” that a plucked string is made up of a bunch of harmonic parts: 

 

 

 

 

 
 

Fourier’s Theorem says that any periodic motion can be represented as a sum of simple harmonic 

motions.  “Fourier analysis” or “harmonic analysis” refers to the decomposition of a vibration 

(periodic function) into its harmonic components (sine functions).  Fourier analysis permeates all 

of science and engineering.  This far-reaching mathematical tool is used in applications ranging 

from building a music (Moog) synthesizer, to designing circuits, to analyzing waveforms, to 

processing voltages in electronics, to processing light in optical systems, and to calculating a 

quantum jump in atomic systems.  

 

Computer Experiment:  Adding Harmonics 
 

You will explore how just the right mixture of smooth harmonic modes (sine waves) can produce 

the pointed shape of a plucked string (triangular wave).  Start the program Logger Pro and open 

the file “Fourier”.   You will see three graphs showing the first three base shapes (harmonics) of 

a guitar string of length 100 cm.  Note that the first harmonic y1 is “loud”, while the second and 

third harmonics (y2 and y3) are “fainter”.   Use the Examine Icon [x=?] to find the amplitudes   

(A1 , A2 , A3) and the wavelengths (λ1 , λ2 , λ3) of each harmonic. 

 

      A1  =   ___________  .                 A2  =   ___________  .                 A3  =   ___________  . 

 

      λ1  =   ___________  .                  λ2  =   ___________  .                  λ3  =   ___________  . 

 Before        After 

+ + = +      • • • 
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Use the Examine Icon to find the y-values of the harmonic functions for each of the x-values 

listed in the following table.  Use your calculator to sum the y-values.  
 

Fourier Analysis Table 
 

Point on String 

x (cm) 
1

st
 Harmonic 

y1 (cm) 

2
nd

 Harmonic 

y2 (cm) 

3
rd

 Harmonic 

y3 (cm) 

Sum of Harmonics 

y1 + y2 + y3  (cm) 

0     

5     

10      

15     

20     

25     

50     

70     

90     

100     

 

Use Graphical Analysis to plot  y1 + y2 + y3 (vertical axis)  versus  x (horizontal axis).  Change 

the y-axis range to go from 0 to 50.  Draw a connect-the-dots line through the points.  PRINT this 

Sum-Over-Harmonics graph. 

 
Where is the Guitar String Plucked?    
 

Based on the shape of your Sum-Over-Harmonics graph,  

what point on the string (0 < x < 100) is pulled and released?              x  =    _______________  . 

 

 
Fourier Essence.    Note how each harmonic part (y1 , y2 , y3) consists of sine curves (smooth 

and round).  In sharp contrast, note how the sum of the harmonics (y1 + y2 + y3) forms a triangle 

(straight lines and sharp point).  This is a remarkable feature of adding sine curves:  
 

By compounding simple sine waves, you can generate square, triangular, and sawtooth waves !   
 

As you add more and more harmonics, the edges become sharper and the lines become straighter.  

Open the file “Adding Sines” to see the sine curves y1 , y2 , y3  plotted on the same graph.  

PRINT this graph.  Carefully look at y1 , y2 , y3 to understand the “Fourier Essence”.  Note how 

in a certain region all the sine curves bend in the same direction.  When this happens, the 

curvatures mutually reinforce each other producing a huge curvature, that is an acute angle 

(sharp point).  In other places, the curves bend in opposite directions − the curvatures mutually 

weaken each other − so that a straight line results.  
 

(1) Mark these two special regions on your printed graph of the sine curves y1, y2, y3.   

(2) Label one region “Reinforcing Curvatures” and the other “Canceling Curvatures”.    

(3) Sketch  y1 + y2 + y3  on this graph.  
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Part III.   Discovering a Harmonic Spectrum 

 

A.  Experiment: Measuring the Spectrum 
 

Use the slinky as before − keep one end fixed, make the length 4 to 5 meters, shake the other end.  

Record the length:  L = __________ m.   Shake at the “right frequencies” to create the first three 

harmonics n = 1 , 2 , 3 .   Note: the uncertainty in measuring the integer n is exactly equal to zero: n ± 0 ! 
 

Measure the period of each harmonic.  Note that the period of the “flip-flopping” loops on the 

slinky is equal to the period of your shaking hand.  Use a stopwatch to measure the time for ten 

“flip flops” and then divide by ten to get the period.  Sketch the shape of each mode you 

observed.  Record your measured values of the period and the frequency of each mode. 
 

 

  Mode Number                     Mode Shape                 Period  (s)         Frequency  (Hz) 
 

 

 1 

 
  

2 

 
 

 3 
 

 
 

Do your measured frequencies satisfy the harmonic law fn = nf1 ?     Explain. 

 

 

 

 

B.  Theory: Calculating the Spectrum 
 

So far, you have measured the spectrum of natural frequencies of the slinky system.  You will 

now calculate this spectrum based on the theory of waves.  There are three basic ingredients that 

make up the theory of wave motion: 
 

Kinematics:  v = λf   (since velocity  =  distance over time  =  λ/T). 
 

Dynamics:  v = (F/µ)
1/2

   (from solving F = ma for a string with tension F and mass density µ). 
 

Harmonics:  n(λ/2) = L   (Mode n consists of  “n half-wavelengths just fitting inside length L”). 
                                             For a proof of this “fitting condition”, see the mode pictures on page 1. 

 
Note:  Even though a standing wave does not travel, the concept of velocity still makes sense because when you shake a 

string, you generate a traveling wave that propagates along the string.  The velocity v of this traveling wave (whose 

back-and-forth motion forms the standing wave) defines the “v” that appears in the standing wave equation fn  = nv/2L. 

 

Derive the Frequency Formula.  In the space below, combine the Kinematic relation v = λf 

with the Harmonic relation n(λ/2) = L to find how the frequency f of mode n depends on n , v , 

and L.  

 
 

                                          f  =  ________________  .  
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The following table summarizes the mode physics of a vibrating string (showing only n=1,2,3).   
 

Fill in the four blank boxes: 
 

                   Mode  Wavelength  
(n ½-waves = string length) 

Frequency  

f = v/λ 

 
1

st
 Harmonic    

 

1 λ/2  =  L 

 

 

 
2

nd
 Harmonic    

 

 

 

f2 = 2 v/2L 

 
3

rd
 Harmonic    

 

3 λ/2  =  L 

 

 

Bottom Line:  The overtones are integer multiples of the fundamental: fn = nf1 , where f1 = v/2L. 

So to calculate the entire theoretical spectrum (an  infinite  number of frequencies fn ), all you 

need to know are the values of  two  kinematic quantities:  L and v ! 

 

Record L.   Length of stretched slinky on which you observed n=1,2,3:     L  =   __________  m . 
 

Find v.   The velocity of a wave on a string (or coil) does not depend on the shape of the wave.  All small 

disturbances propagate along the string at the same speed.  So the best way to measure the value of v is to 

make a wave which is easiest to observe.  The simplest kind of wave is a single pulse. 
 

Stretch the coil as before so that it has the same length L.  Keep both ends fixed.  At a point near one end, 

pull the slinky sidewise (perpendicular to the length) and release.  This will generate a transverse traveling 

wave.   Observe this wave disturbance (pulse) as it travels down the slinky, reflects off the other end, and 

travels back to its point of origin.  Use a stopwatch to measure the time it takes for the pulse to make four 

round trips,  i.e. 4 down-and-back motions along the entire length of the coil.  Divide by 4 to get the round-

trip time tr.  Calculate the velocity v of the wave on your coil using the fact that the wave pulse travels a 

distance 2L (down L + back L) during the round trip time. 

 

  Round-Trip Time tr   =    ____________  s .               Wave Velocity  v  =   ____________  m/s . 

 

Calculate f.   From your measured values of L and v, calculate the harmonic frequencies f1, f2, f3 

using the theoretical relation that you derived above.   Show your calculation: 

 

 

 

 

 

C.  Compare Experimental and Theoretical Spectrum.   
 

Summarize your measured and calculated values of the natural frequencies {f1 , f2 , f3 , ... } that 

characterize the slinky system. 
 

n fn  (experiment) fn  (theory) % Difference 

1    

2    

3    

λ/2 

  λ/2   λ/2 
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Part IV.   Precision Measurement of “Proper Tones” and Wave Speed 

 

The system you will study consists of a string of finite length under a fixed tension.  One end of 

the string is connected to an electric oscillator − a high-tech “shaker”.  Instead of you shaking the 

string by hand, the electric oscillator moves the string up and down at a frequency that you can 

control with high precision.  The tension in the string is due to a precisely known mass hanging 

on the other end.  Your “research goal” is to answer two basic questions: 

 

          1.  What are the natural frequencies of this string system? 

          2.  What is the speed of a wave on this system? 

 
 

A.  Frequency Spectrum 
 

Just like you “tune in” to different radio stations, here you will tune in to the natural “broadcast 

frequencies” of the string. 
 

Hang 150 grams from the end of the string.   
 

Set up the standing waves   n = 1 , 2 , 3 , 4 , 5   by driving the string with the electric oscillator 

using the following procedure.   
 

Procedure for Resonating with the String:   Start with the frequency of the oscillator equal to    

1.0 Hz.  Set the amplitude of the oscillator equal to one-half its maximum value.  Look at the end 

of the string attached to the oscillator.  It is going up and down once every second – just like your 

hand shaking the slinky!  Now slowly increase the frequency until the first (n =1) resonance is 

achieved where the string forms one big “flip-flopping” loop.  If the oscillator makes a rattle 

sound, then decrease the amplitude.   Continue to increase the frequency and successively “tune 

into” each of the overtones n = 2, 3, 4, 5.   Record your measured values of f1 , f2 , f3 , f4 , f5 : 

 
 

n 1 2 3 4 5 

fn  (Hz)      

 
 

Do these natural frequencies (proper tones) of the string system form a harmonic spectrum?  

Explain. 

 

 

 

 

 
 

 

B.  Wave Speed 
 

The wave speed on the string is too fast to measure with a stopwatch.  “Flick” the string and try 

to observe the traveling pulse.  Good Luck.  Setting up standing waves is the gold-standard 

technique to measure the speed of any kind of wave − from sound in air (300 m/s) to light in a 

vacuum (300,000,000 m/s).  When you set up a standing wave, you are in effect “freezing” 

(taking a snapshot of) the speeding wave so you can easily observe the shape of the wave and 

measure the wavelength. 
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To get an accurate value of the wave speed v, find v using two different methods: 

 

1. Space - Time Method:    Measure λ and f for each mode n.      Compute v = λf . 
 

You have already measured f for each n.  To find λ for each n , measure the length L of your 

string (between it’s two “fixed” endpoints) and then compute λ from the Fitting Condition: mode 

n consists of n half-waves stuffed inside L.   The picture below shows the n = 3 fit. 
 
 

 

                                                                                                             L  =   _____________  m . 

 

 

 

  

                

n λ  (m) f   (Hz) v = λf   (m/s) 

1    

2    

3    

4    

5    

 

 

 

2.   Force - Mass Method:    Measure  F and µ  of string.     Compute v = (F/µ)
1/2

 .    
 

The tension F in the string is equal to the weight of the hanging mass.  To find the mass density µ 

of the string (µ ≡ mass per unit length), use the sample string on the back table.  Do not remove 

the string attached to your oscillator and weight.   
 

Note:  The sample string came from the same spool of string as the actual string and therefore has the same 

value of µ.  The sample string may have a larger mass and a larger length than the actual string , but the 

mass-per-length  ratio is the same.     
 

 

Tension:  F   =   _________  N .      

 

Mass density:  µ  ≡  mass / length  =   (               kg) / (               m)    =   ________________  kg/m. 

 

 

                        Wave Speed:   v   =   (F/µ)
1/2

      =      _______________   m/s . 

 

      

Compare your two results for v  [space-time λf   and   force-mass (F/µ)
1/2

 ]: 

 

 

 
average  v  =  _____________  m/s.        

 L 

 λ/2  λ/2  λ/2 
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Part V.   Design Project: Create a 3-Loop Flip-Flop @ 57 Hz 

 

The system consists of your stretched string, electric oscillator, and hanging weight.  

The application requires that you set up a 3-loop standing wave pattern on the string that vibrates 

at the rate of 57 cycles per second.  The system parameter that you can change is the tension in 

the string. 

 

The Theory 
 

First work out the theory, then do the experiment.  Recall the three essential elements of wave 

theory:    (1) Kinematics:  v = λf.        (2) Dynamics:  v = √F/µ.        (3) Harmonics:  nλ/2 = L. 
 

The string parameters are  length L , tension F , mass density µ , number of loops n. 

The wave properties are  velocity v , frequency f , wavelength λ . 

 

1. Carefully derive the formula that gives F as a function of the four parameters:  n , L , f , µ .   

 

 

 

 

 

 

 

                     
 

2.   Write the numerical values of the parameters: 

   

         n  =  ____ .        L  =  __________ m.         f  =  _______ Hz.           µ  =  ___________ kg/m. 

 

3. Substitute these values into your F formula to find the tension value:   F  =   ___________ N . 

 

4.   Compute the value of the hanging mass:      m  =  __________ kg . 

 
 

The Experiment 
 

1. Set the tension in the string by hanging the amount of mass as predicted by your theory. 
 

2. Turn on the oscillator. 
 

3. Vary the frequency of the oscillator so that the 3-loop mode is established on the string    

      “loud” and clear,  i.e. fine tune the frequency until the loop amplitude is maximum.   

 

4.   Record the value of this 3-loop frequency:    f3   =   ____________ Hz .              

 

5.  Compare this experimental value of f3 with the Design Specs value of 57 Hz. 

 

 

                       % difference between f3 and 57 Hz is    _________  % . 

 

    F  =   


