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Abstract. The fundamental group is an invariant of topological spaces that measures
the contractibility of loops. This project studies the fundamental group, its basic proper-
ties, some elementary computations, and a resulting theorem: the Fixed Point Theorem of
Brouwer, which states that every continuous function mapping the disk to itself has a fixed
point.

1. Introduction

The fundamental group ties together the ideas of topological spaces, homotopy, and group
theory. The fundamental group can help answer the question of whether two topological
spaces are not homeomorphic. A resulting theorem from studying the fundamental group
is the Fixed Point Theorem of Brouwer, which has applications in areas such as economics,
game theory, and other fields of math.

Given a topological space, a path can be thought of as a continuous way to move from one
point to another point. If the path starts and ends at the same point, the path is called a
loop.

Figure 1. Three different paths and three different loops

Two paths are path homotopic if one can be continuously deformed into the other. In
Figure 2, the first picture shows two paths, and the second picture shows how the two paths
can be continuously deformed into one another. Hence, the two paths are path homotopic.
If two paths are path homotopic, they can be considered the same in some sense.

Concatenation of two paths can be defined on two paths if the end point of the first path
is the initial point of the second path. As pictured in Figure 3, the resulting path is the
path obtained by first traveling on the first path with double the speed followed by traveling
along the second path with double the speed.

Take a topological space X and choose a point x0 ∈ X. Let π1(X, x0) be the set of path
homotopy classes of loops based at x0. With the operation of concatenation, it can be shown
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Figure 2

Figure 3

π1(X, x0) is a group called the fundamental group1 of X relative to the base point x0. The
identity of this group is the path homotopy class containing the constant path x0. The
inverse of an element is obtained by travelling a representative loop in reverse.

Note that choosing a different basepoint may result in a nonisomorphic fundamental group.
However, if two points are in the same path component, then each point will produce the
same fundamental group up to isomorphism.

Acknowledgment: I would like to sincerely thank Professor Thomas Fiore for introduc-
ing me to algebraic topology, for encouraging me to do this project, and most importantly,
for providing his invaluable guidance and assistance at every step of the way.

2. Fundamental Group Examples

We now give formal definitions to help us look at specific examples. In the following
discussion, let I = [0, 1].

Definition 2.1. Let X be a topological space. Let a, b ∈ X. A path from a to b is a
continuous function f : [0, 1]→ X such that f(0) = a and f(1) = b.

Definition 2.2.
Let f and f ′ be two paths in a topological space X such that f(0) = f ′(0) = x0, f(1) =
f ′(1) = x1. The path f is said to be path homotopic to f ′ if there exists a continuous map

1A group is a set G with an associative binary operation ∗ : G × G → G such that there is an identity
element and every element has an inverse with respect to ∗
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F : I × I → Y such that for all s, t ∈ I
F (0, t) = x0

F (1, t) = x1

F (s, 0) = f(s)

F (s, 1) = f ′(s)

We call F a path homotopy between f and f ′. In this case, we write f 'p f ′. It can easily
be shown that 'p is an equivalence relation on X. The equivalence classes under 'p are
called path homotopy classes and are the elements of the fundamental group.

Lemma 2.3. If A ⊆ Rn is convex and a0 ∈ A, then π1(A, a0) is the trivial group.

Proof: Let f be any loop based at a0 in A. Let ca0 be the constant loop based at a0.
We will show f 'p ca0 .

Consider F : I × I → A such that

F (s, t) = (1− t)f(s) + ta0

Note that the image of F is contained in A since A is convex, so F is well-defined. Also,
since (1− t), ta0, and f are continuous, F is continuous since F is made up of the product
and sum of continuous functions. Moreover,

F (0, t) = (1− t)f(0) + ta0 = (1− t)a0 + ta0 = a0

F (1, t) = (1− t)f(1) + ta0 = (1− t)a0 + ta0 = a0

F (s, 0) = f(s)

F (s, 1) = a0 = ca0 .

Hence, F is a path homotopy between f and ca0 . Therefore, π1(A, a0) = {[ca0 ]} ⇒π1(A, a0)
is the trivial group.

Since a convex space has exactly one path component, for any a0, a1 ∈ A, π1(A, a0) ∼=
π1(A, a1).

Example 2.4. We immediately get the result that π1(D
2, x0) ∼= ({0},+) since D2 is convex.

Hence, the fundamental group of the disk is the trivial group.

Example 2.5. π1(S
1, x0) ∼= (Z,+). There is a correspondence between traveling around

the circle and the integers. For instance, traveling around the circle once counterclockwise
is like the number 1. Similarly, traveling around the circle once clockwise is like the number
-1. Hence, traveling around the circle once counterclockwise followed by once clockwise can
be thought of as standing still, which is the same as the number −1 + 1 = 0. Since the
fundamental group of the circle is isomorphic to the integers with addition, we know that
the fundamental group of the circle is cylic. In fact, the path homotopy class containing
the path that travels around the circle once counterclockwise and the path homotopy class
containing the path that travels around the circle once clockwise are the two generators. For
a formal proof of this result, see Munkres [2, see pages 345–346].

Example 2.6. π1(T, x0) ∼= (Z×Z,+). The two generators of the fundamental group of the
torus in red and blue are pictured in Figure 4.
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Figure 4

3. Distinguishing Topological Spaces with the Fundamental Group

We can use the fundamental group to help distinguish between different topological spaces.
Let Top∗ be the category of pointed topological spaces with basepoint preserving continuous
maps as arrows and let Grp be the category of groups with homomorphisms as arrows.

Remark 3.1. π1 : Top∗ → Grp is a functor.

Let (X, x0) and (Y, y0) be pointed topological spaces. Let h : (X, x0) → (Y, y0) be a
continuous map. We will define π1(h) := h∗ : π1(X, x0)→ π1(Y, y0) where h∗([f ]) = [h ◦ f ].
The map h∗ is called the homomorphism induced by h.

Proof: Let (X, x0), (Y, y0), (Z, z0) be pointed topological spaces and let g : (X, x0) →
(Y, y0), h : (Y, y0)→ (Z, z0) be continuous maps. It is clear what the object function is.

Consider the arrow function as described above which takes a continuous map h to the
homomorphism induced by h.

We must first show π1(h ◦ g) = π1(h) ◦ π1(g). We will show this equality by showing the
two functions agree pointwise. Let [f ] ∈ π1(X, x0). Then,

π1(h ◦ g)([f ]) = (h ◦ g)∗([f ])

= [(h ◦ g) ◦ f ]

= [h ◦ (g ◦ f)]

= h∗([g ◦ f ])

= h∗(g∗([f ]))

= (h∗ ◦ g∗)([f ])

= (π1(h) ◦ π1(g))([f ])

Also,

π1(1(X,x0))([f ]) =1(X,x0)∗([f ])

= [1(X,x0) ◦ f ]

= [f ]

= 1π1(X,x0)([f ]).

Hence, π1 is a functor.

Corollary 3.2. π1 takes homeomorphisms to isomorphisms.

With this corollary, we see that if two spaces are homeomorphic, they must have the same
fundamental group up to isomorphism. In the above examples, each space has only one path
component. Therefore, choosing a different base point will result in the same fundamental
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group up to isomorphism. Because each topological space in the previous examples has a
different fundamental group from the others, none of these spaces are homeomorphic to one
another.

We have claimed if two spaces are homeomorphic, they must have the same fundamental
group. However, the converse is not true. For instance, the fundamental group of S2 is the
trivial group and the fundamental group of R is also the trivial group. However, R is not
homeomorphic to S2 since the latter is compact and the former is not.

4. The Fixed Point Theorem of Brouwer

Theorem 4.1 (The Fixed Point Theorem of Brouwer). Every continuous function mapping
the disk to itself has a fixed point.

Before proving the Fixed Point Theorem of Brouwer, we will first prove a useful lemma,
which uses the fact that π1 : Top∗ → Grp is a functor.

Definition 4.2. Let X be a topological space A ⊆ X is a retraction if there exists a
continuous function f : X → A such that f |A = idA.

Lemma 4.3. There is no retraction from S1 to D2.

Proof: Proceeding by contradiction, suppose there exists a retraction r from S1 to D2.
Let i be the inclusion from S1 to D2. Note, r ◦ i = idS1 .

Figure 5

Since π1 is a functor and by Example 2.4 and Example 2.5, we get Figure 6.
This is a contradiction since this would mean there exists a surjection from a single point

set to all of Z.

Now, we are ready to prove Brouwer’s Fixed Point Theorem using the idea of May [1, see
page 10].

Proof: Let f : D2 → D2 be continuous. Proceeding by contradiction, suppose there is
no fixed point of f . In other words, for every x ∈ D2, f(x) 6= x.

Define a new function r : D2 → D2. For x ∈ D2, let r(x) be the tip of the ray on S1 that
begins at f(x) and passes through x. Note that r is well-defined since f(x) 6= x means that
r(x) ∈ S1 for all x ∈ D2. Since f is continuous it follows that r is continuous. The map r(x)
is pictured in Figure 7.
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Figure 6

Figure 7

But what happens when x lies on the edge of the circle? We have that r(x) = x when
x ∈ S1. See Figure 8.

Figure 8

Hence, r|S1 = idS1 . So r is actually a retraction of S1 to D2. This is a contradiction by
the previous lemma since no retraction of the circle to the disk can exist. Therefore, every
continuous function mapping the disk to itself has a fixed point.
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