
HIGHER OPERADS

TALK BY THOMAS M. FIORE, NOTES BY KYLE ORMSBY

This talk attempts to motivate the study of higher operads and their many vari-
ants. Some exercises and open problems in the field are presented in the text. These
are notes from a talk I presented at the 2010 Graduate Student Topology and Ge-
ometry Conference in Ann Arbor, Michigan. I thank Nina White and Michelle Lee
for their terrific organization of a very fun conference. Special thanks go to Kyle
Ormsby for carefully and efficiently typesetting the first draft of these notes, on
which I then elaborated. Any errors are of course mine alone.

1. Topological motivation: How is ΩX a homotopy associative space?

We begin with a based space (X, x0), and consider the space of loops in X based
at x0, namely

ΩX := {f : [0, 1] → X | f continuous and f(0) = x0 = f(1)}.

Concatenation of based loops provides ΩX with a multiplication: for f, g ∈ ΩX, we
have

(f ∗ g)(t) :=

{
f(2t) if 0 ≤ t ≤ 1/2,

g(2t− 1) if 1/2 ≤ t ≤ 1.

Note that the multiplication is not strictly associative, i.e., (f ∗ g) ∗ h 6= f ∗ (g ∗ h).
By the standard argument, though,

(1) (f ∗ g) ∗ h ' f ∗ (g ∗ h),

i.e. the multiplication on ΩX is associative up to homotopy. To picture the homo-
topy in (1), one can draw the unit square with a line connecting 1

4 on the bottom
edge to 1

2 on the top edge, and a line connecting 1
2 on the bottom edge to 3

4 on the
top edge. Then the homotopy is defined on a horizontal slice line by doing f on the
segment in the left region, g on the segment in the middle region, and h on the seg-
ment in the right region. This suggests that we should also consider concatenations
of three paths f ,g, and h, where the three subintervals of [0, 1] for f ,g,h, can have
various lengths.

Further suggestions for more general concatenations arise when we consider com-
posites of 4 based loops.

(2) ((f ∗g)∗h)∗ i ' (f ∗g)∗(h∗ i) ' f ∗(g∗(h∗ i)) ' f ∗((g∗h)∗ i) ' (f ∗(g∗h))∗ i

Date: April 27, 2010.

1



2 TALK BY THOMAS M. FIORE, NOTES BY KYLE ORMSBY

The first and the last entries of (1) are also homotopic, and we have a diagram like
the famous Mac Lane pentagon. But does it commute?

This leads us to consider, abstractly and simultaneously, all possible concatena-
tions of finitely many based loops. The formal structure encoding this information
is C, the little intervals operad. For n ∈ N, let

C(n) =

{
λ = (λ1, . . . , λn)

∣∣∣ λi : [0, 1] → [0, 1] linear embeddings such that the
interiors of the images of λi and λj are disjoint for all i 6= j

}
.

We should think of C(n) as the “space of operations of n variables;” it is equipped
with the following structure:

• operad composition

γ : C(n)× C(k1)× · · · × C(kn) → C(k1 + · · ·+ kn)

(λ, µ1, . . . , µn) 7→

(λ1 ◦ µ1
1, λ1 ◦ µ1

2, . . . , λ1 ◦ µ1
k1

,

λ2 ◦ µ2
1, λ2 ◦ µ2

2, . . . , λ2 ◦ µ2
k2

,

. . . ,

λn ◦ µn
1 , λn ◦ µn

2 , . . . , λn ◦ µn
kn

)

(essentially insert each µi into λi),
• operad unit

1[0,1] ∈ C(1),

• permutation action of Σn, the permutation group on n letters, on C(n) which
permutes the labels i of the little intervals λi.

The operad composition γ is associative, unital, and equivariant, i.e., C is a sym-
metric operad in the sense of May [9].

Now note that ΩX is an algeba over C. In other words, we have

α : C(n)× (ΩX)n → ΩX

λ× (f1, . . . , fn) 7→ (f : [0, 1] → X)

where f is fi (rescaled!) on the image of λi and the basepoint x0 otherwise. Note
that α is associative, unital, and equivariant; as is required to be an algebra over a
symmetric operad. An equivalent formulation1 is to say we have a symmetric operad
morphism C → End(ΩX). To say that ΩX is “homotopy associative” is really to
say that it is an algebra over the little intervals operad C.

In summary: we have recalled the space of a based loops ΩX in a based space
X, along with its algebraic structure of concatenation of loops. The little intervals
operad parametrizes all possible concatenations, and makes precise in which sense
the multiplication on ΩX is homotopy associative, namely there is a homotopy as
in (1), and these homotopies are compatible up to higher homotopies (the pentagon

1To see this, one uses the usual exponentiation in an appropriate category of spaces, namely

Map(X × Y, Z) ∼= Map(X, Map(Y, Z)).
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diagram commutes only up to homotopy), and these higher homotopies are compat-
ible up to higher homotopies, and so on, ad infinitum. More, precisely, the space
of based loops on a based space is an algebra over the little intervals operad C.
But could one dream that the converse is true? This is the celebrated Recognition
Principle of Peter May.

Theorem 1.1 (May 1972, [9]). A path connected space Y is homotopy equivalent to
ΩX for some X if and only if Y is an algebra over the little intervals operad C = C1.
(A similar statement holds for n-fold loop spaces and the little n-cubes operad Cn.)

How is homotopy associativity related to ordinary associativity? Strictly as-
sociative spaces are controlled by the associativity operad, which in degree n is
Assoc(n) = Σn. The homotopy associativity operad C is in a sense an expanded
replacement of the associativity operad.

Proposition 1.2. The canonical map C → Assoc is a homotopy equivalence of
operads.

Proof. What do we mean by the “canonical” map C → Assoc? Well, the linear
embeddings λ = (λ1, . . . , λn) ∈ C(n) have their disjoint images in [0, 1] ordered, as
we go from left to right in [0, 1]. This ordering determines a permutation on n-
letters, which is the image of λ under the canonical map. We see that this canonical
map essentially contracts each path component of C(n) to a point: λ and µ are in
the same path component of C(n) if and only if we can slide the λi’s left or right
(but not past each other), and stretch or shrink them, in order to obtain the µi’s.
In this case, λ and µ determine the same permutation. Linear embeddings λ and µ

determine different permutations if and only if µ cannot be obtained from λ in this
way. �

Exercise 1.3. In this exercise, we learn a succinct, conceptual definition of Set-
operad2 which can then be imported to many other contexts. Let Coll denote the
category of collections. Objects are sequences of sets {Sn}n≥0, and morphisms are
sequences of functions. The category Coll is the same as the slice category Set /N.
Prove that the operation

⊗ : Coll×Coll → Coll

defined by
(S ⊗ T )` =

∐
k1+···+kn=`

Sn × Tk1 × · · · × Tkn .

makes (Coll,⊗) into a monoidal category. Then prove that monoids in the monoidal
category (Coll,⊗) are precisely nonsymmetric Set-operads.

2By Set-operad we simply mean an operad O in which the spaces O(n) are simply sets. The

little intervals operad C is a topological operad, since each C(n) is a topological space.
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2. Renaissance: the 1990’s

In the 1990’s the theory of operads and its applications experienced a Renaissance.
There was much work on real geometry (compactifications of configuration spaces,
the cactus operad for Chas-Sullivan product on free loop spaces, . . . ), mathematical
physics (deformation quantization of Poisson manifolds, . . . ), algebra, topology, and
much more. See the recent article [8] for a discussion and introduction.

Many variants and new examples were proposed and discovered. I would just
like to mention two: cyclic operads and modular operads [2, 3, 4, 5]. Riemann
spheres with parametrized labelled holes form a cyclic operad (i.e. output can be
interchanged with an input). The moduli space of Riemann surfaces with holes
forms a modular operad.

Exercise/Problem 2.1. Find monoidal categories in which monoids are cyclic
operads or modular operads.

3. Colored operads and quasi-operads

There are still many situations which ordinary operads cannot handle. For exam-
ple, say you want an algebra to be a pair consisting of a monoid and a space it acts
on, or a ring R with an R-module, or say you want an algebra to be a morphism
of algebras. For such situations, we have colored operads, also from the 1970’s.
Moerdijk and Weiss have recently developed the theory of weak colored operads,
called quasi-operads [12, 11]. See [10] for an exposition and more explanation of
some topics in this section.

Definition 3.1. A colored operad is a pair (C,P ) consisting of a set C of colors
and for each sequence c1, . . . , cn; c a space P (c1, . . . , cn; c) of operations which take
inputs of “types” c1, . . . , cn to an output of type c. We have

• colored operad composition

P (c1, . . . , cn; c)× P (d1
1, . . . , d

1
k1

; c1)× · · · × P (dn
1 , . . . , dn

kn
; cn) → P (d1

1, . . . , d
n
kn

; c),

• for each c ∈ C, a colored operad unit

1c ∈ P (c; c)

• for each n ≥ 1, a Σn-action: σ ∈ Σn gives

σ∗ : P (c1, . . . , cn; c) → P (cσ1 , . . . , cσn ; c).

Definition 3.2. A P -algebra A consists of spaces Ac, c ∈ C with actions

P (c1, . . . , cn; c)×Ac1 × · · ·Acn → Ac

satisfying the expected axioms.
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As an example of a colored operad, any non-planar, finite, nonempty, rooted
tree T generates a colored operad Ω(T ) in which colors are the edges of T and the
generators of operations are the vertices of T . For example, if T is the tree below,

a >>
>>

>>
>> v

b}}
}}

}}
}

w

c

then the operad Ω(T ) has colors a, b, and c and generating operations v ∈ Ω(T )(−; b)
and w ∈ Ω(T )(a, b; c). The other operations are: units 1a, 1b, 1c, composites of those
already given, and permutations of all of these.

Other examples of trees are finite ordinals: any finite ordinal [n] = {0, 1, . . . , n} ∈
∆ can be viewed as a tree with n vertices and n + 1 edges.

Exercise 3.3. (1) Find a (nonsymmetric) operad on two colors whose algebras are
pairs (A,X) where A is a monoid and X is a space on which A acts; similarly
for rings, modules.

(2) If O is an operad, find a colored operad whose algebras are O-algebra morphisms.
(3) Find a colored operad whose algebras are ordinary operads.
(4) Find a monoidal category in which monoids are colored operads.

Remark 3.4. Non-symmetric colored operads are the same as small multicategories,
i.e. “categories” in which arrows have a sequence of objects as source, as opposed
to a single object as source.

Exercise 3.5. There is a multicategory Vect with objects finite-dimensional real
vector spaces and

HomVect(V1, . . . , Vn;V ) = {f : V1 ⊗ · · · ⊗ Vn → V | f linear}.

An important consequence of the observation in Remark 3.4 is that we can take
the nerve of a colored operad, since a colored operad is a symmetric multicategory.

Definition 3.6 (Moerdijk-Weiss). Let Ω be the category of non-planar, finite,
nonempty, rooted trees. A dendroidal set is a functor Ωop → Set. The dendroidal
nerve of a colored operad P is

Nd(P ) : Ωop → Set

T 7→ Homoperad(Ω(T ), P ),

where the colored operad Ω(T ) associated to a tree T was defined above.

Definition 3.7 (Moerdijk-Weiss). A quasi-operad is a dendroidal set in which every
inner horn has a filler.
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Theorem 3.8 (Cisinski-Moerdijk [1]). There is a very good model structure on the
category of dendroidal sets such that

• the fibrant objects are quasi-operads,
• the cofibrations are normal monomorphisms,
• (τd, Nd) : dSet ↔ ColoredOperads is a Quillen adjunction,
• this model structure is compatible with the Joyal model structure on sSet,
• this model structure is symmetric monoidal, and the tensor product is com-

patible with the Boardman–Vogt tensor product of operads, and
• this model structure is left proper, cofibrantly generated, and combinatorial.

Indicating the fibrant objects and cofibrations in Theorem 3.8 is sufficient for this
talk, since a model structure is completely determined by its class of fibrant objects
and its class of cofibrations by Proposition E.1.10 of [6].

Problem 3.9. Find a “dendroidal geometric realization” | |d such that

(a)

sSet
i! //

| |
��

dSet

| |d{{xxxxxxxx

Top

commutes,
(b) | |d sends ⊗ to ×, and
(c) | |d does not lose too much information.

4. ∞-operads (Lurie DAG III)

Advantages: These are defined purely in terms of simplicial sets, the combinatorics
of trees do not play a role.

Drawback : The simplicial sets that arise are complicated.
Lurie’s Application: Develop E∞-ring spectra from a quasi-category point of

view.
Idea: Given a colored operad, take its category of operators, then take its nerve,

and get a simplicial set over NΓ. (Here Γ is Segal’s category, namely a skeleton of
the category of nonempty, finite, pointed sets.) Then an ∞-operad is something like
such a simplicial set over NΓ.

Let Γ be Segal’s category of nonempty, finite, pointed sets. Objects are pointed
sets 〈n〉 = {∗, 1, 2, . . . , n}, where n ≥ 0 and maps are functions preserving ∗. Let P

be a colored operad. Define its “category of operators” P⊗ as follows. The objects
of P⊗ are finite sequence of colors. A morphism (X1, . . . , Xm) → (Y1, . . . , Ym) in P⊗

is a morphism f : 〈m〉 → 〈n〉 in Γ together with operations ϕj : {Xi}i∈f−1(j) → Yj

for each 1 ≤ j ≤ n in P . We have a forgetful functor P⊗ → Γ.
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Definition 4.1 (See Definition 1.1.12 of [7]). An ∞-operad O⊗ is a simplicial set
O⊗ equipped with a map of simplicial sets O⊗ → NΓ satisfying properties like those
of NP⊗ → NΓ described above.

Theorem 4.2 (Proposition 1.8.4 of [7]). There is a good simplicial model category
whose fibrant objects are essentially ∞-operads.

Problem 4.3. Prove that the Cisinski-Moerdijk model category on dendroidal sets
is Quillen equivalent to Lurie’s model category. For some discussion of an approach,
see [13].

Problem 4.4. Develop analogous pictures for cyclic operads and prove their equiv-
alence; do the same for modular operads as well.

Problem 4.5. Also do the same for globular operads, thus moving Batanin’s com-
binatorial definition of weak n-category into the simplicial world.
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