Mathematics and Music 2007 REU Topos of Triads Problems Tom Fiore

- 1. Recall that a monoid is a set with an associative and unital binary operation, and an affine map $\mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{12}$ is a map of the form ${}^t s(z) = sz + t$. Prove that the set of affine maps $\mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{12}$ is a monoid.
- 2. Prove that an affine map $\mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{12}$ only depends on its values at 0 and 1. Given an affine map, determine s and t from the values at 0 and 1. How many elements does the monoid of affine maps $\mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{12}$ have?
- 3. (a) Prove that a monoid is the same thing as a one-object category.
- (b) Prove that a set with an action by a monoid M is the same as a functor $M \longrightarrow Sets$. What do left and right actions correspond to?
- (c) Prove that an M-equivariant map is the same as a natural transformation between the associated functors.
- (d) Explain why we use the notation $Sets^{\mathcal{T}}$ for the topos of triads.
- 4. Prove that the inclusion $\{0\} \longrightarrow \{0,1\} = \Omega$ is a subobject classifier in the category of sets and functions. The characteristic morphisms are the characteristic functions, i.e., $\chi_{A\subseteq X}(x)=0$ if and only if $x\in A$ and is 1 otherwise. Compare this problem with the topos axioms.
- 5. In the category of sets and functions, prove that there is a natural bijection

$$Hom(X \times Y, Z) \cong Hom(X, Map(Y, Z))$$

$$f \mapsto (x \mapsto f(x, -)).$$

In the category of sets and functions, Map(Y, Z) is the same as Hom(Y, Z). Compare this problem with the topos axioms.

- 6. Recall that the triadic monoid is $\mathcal{T} = \{^00, ^10, ^40, ^01, ^13, ^49, ^48, ^04\}$ where ts denotes the affine map $\mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{12}$ given by $^ts(z) = sz + t$. Prove that this monoid is precisely the monoid of affine maps preserving the C-major triad $\{0, 1, 4\}$. (We are using circle of fifths encoding). Hint: Recall that ts is determined by what it does to 0 and 1.
- 7. Recall that if A is a subobject of X in the topos of triads $Sets^{\mathcal{T}}$, its characteristic morphism $\chi_A: X \longrightarrow \Omega$ is defined by

$$\chi_A(x) := \{ h \in \mathcal{T} | hx \in A \}$$

where $\Omega = \{\mathcal{T}, \mathcal{P}, \mathcal{L}, \mathcal{R}, \mathcal{C}, \mathcal{F}\}$. Calculate the characteristic function $j_{\mathcal{P}}$ for the subobject $\{\mathcal{P}, \mathcal{T}\}$ of Ω . Hint: Use the multiplication table on page 112 and the lattice on page 114 of Noll's article. To check your answer, here is a table.

x	$j_{\mathcal{P}}(x)$	$j_{\mathcal{L}}(x)$	$j_{\mathcal{R}}(x)$
\mathcal{F}	\mathcal{F}	${\mathcal F}$	${\mathcal F}$
\mathcal{C}	\mathcal{C}	\mathcal{R}	$\mathcal L$
\mathcal{L}	\mathcal{L}	\mathcal{T}	\mathcal{L}
\mathcal{R}	\mathcal{R}	\mathcal{R}	\mathcal{T}
\mathcal{P}	\mathcal{T}	\mathcal{T}	\mathcal{T}
\mathcal{T}	\mathcal{T}	\mathcal{T}	\mathcal{T}

The subobject classifier in the topos of triads $Sets^{\mathcal{T}}$ is the inclusion $\{\mathcal{T}\}\longrightarrow \Omega$.

8. Find the subobject of $\mu[10,4]: \mathcal{T} \times \mathbb{Z}_{12} \longrightarrow \mathbb{Z}_{12}$ whose characteristic morphism is $j_{\mathcal{L}} \circ \chi_{\{0,10,4\}}$. Identify the type of scale. Hint: Use the tables on the first two slides to calculate the preimage of \mathcal{T} .