Voicing Transformations and a Linear Representation of Uniform Triadic Transformations

Thomas M. Fiore and Thomas Noll
http://www-personal.umd.umich.edu/~tmfiore/

Preprint on arXiv

Math Results: Structure Theorem for a certain matrix group \mathcal{J} generated by voicing reflections, the center of \mathcal{J}, the centralizers of \mathcal{J} in $G L\left(3, \mathbb{Z}_{12}\right)$ and $\operatorname{Aff}\left(3, \mathbb{Z}_{12}\right)$, compatibilities of \mathcal{J} with permutations

Motivation: RICH in Joe Straus' interpretation of Webern, Concerto for Nine Instruments, Op. 24, Second Movement

Applications:

- Find a matrix with orbit the diatonic falling fifth sequence
- Find four matrices that realize the PLP and L flip-flop in Clampitt's interpretation of Grail sequence
- A linear representation of Hook's group of uniform triadic transformations
- More in the paper.

Motivation for Studying the Group \mathcal{J}
Webern, Concerto for Nine Instruments, Op. 24, Second Movement

Motivation for Studying the Group \mathcal{J}

Webern, Concerto for Nine Instruments, Op. 24, Second

 MovementThe series in this twelve-tone work is constructed from set class 014.

See page 58 of Straus' article Contextual-Inversion Spaces for a bracketing of the first 28 measures of the melody into enchained trichords from set class 014.
We draw lines 3 and 4 in temporal order as

Motivation for Studying the Group \mathcal{J}

Webern, Concerto for Nine Instruments, Op. 24, Second Movement

We write:

Straus writes pcsegs non-temporally in normal form and uses "L" and "P" analogues:

Motivation for Studying the Group \mathcal{J} Webern, Concerto for Nine Instruments, Op. 24, Second Movement

Problems with writing " L " and " P " for non-consonant 014 set class:

- we would expect a hexatonic PL-cycle, but this is octatonic, not hexatonic
- there is not an obvious root in pitch-class segments
- the definition of " L " and " P " is complex to define for re-orderings of pitch-class segments (first go to prime form, then operate, then come back)
Advantages of writing (13) V for RICH
- Avoid the above.
- Temporal ordering is preserved, (13) V is exactly the retrograde inversion enchaining.
- Economy of description.

Suggests: Contrast Three Different Kinds of Reflection of Consonant Triads I_{n}, L, and V

Global Reflection I_{n} : has globally chosen axis of reflection $I_{n}(0,4,7)=-(0,4,7)+(n, n, n)$ is affine

Contextual Reflection L: axis of reflection depends on input chord, look inside triad, find p and q that differ by a minor third, apply I_{p+q}
$L(0,4,7)=I_{4+7}(0,4,7)=(11,7,4) \quad L(C)=e$
$L(7,4,0)=I_{4+7}(7,4,0)=(4,7,11) \quad L(C)=e$
reordered

$$
L(\sigma(0,4,7))=\sigma L \sigma^{-1}(\sigma(0,4,7))
$$

Note: input voicing has no effect on output's underlying pcset this description is not in general unambiguous for other pcsegs

Suggests: Contrast Three Different Kinds of Reflection of Consonant Triads I_{n}, L, and V

Contextual Reflection L: axis of reflection depends on input chord, look inside triad, find p and q that differ by a minor third,
apply I_{p+q}
$L(0,4,7)=I_{4+7}(0,4,7)=(11,7,4) \quad L(C)=e$
$L(7,4,0)=I_{4+7}(7,4,0)=(4,7,11) \quad L(C)=e$ reordered

$$
L(\sigma(0,4,7))=\sigma L \sigma^{-1}(\sigma(0,4,7))
$$

Note: input voicing has no effect on output's underlying pcset this description is not in general unambiguous for other pcsegs

Voicing Reflection V : axis of reflection depends on tones in 2nd and 3rd voice

$$
\begin{array}{ll}
V(0,4,7)=I_{4+7}(0,4,7)=(11,7,4) & V(C)=e \\
V(7,4,0)=I_{4+0}(7,4,0)=(9,0,4) & V(C)=a!
\end{array}
$$

Note: input voicing has big effect on output's underlying pcset! this description is defined on any 3-tuple, and is linear

The Groups \mathcal{J} and $\Sigma_{3} \ltimes \mathcal{J}$

The Group \mathcal{J} is Generated by the Voicing Transformations U, V, and W

The voicing transformations

$$
U, V, W: \mathbb{Z}_{12}^{\times 3} \longrightarrow \mathbb{Z}_{12}^{\times 3}
$$

locally reflect along the axis determined by the tones in two pre-selected voices.
$12 \quad U(x, y, z):=I_{x+y}(x, y, z)=(y, x,-z+x+y)$
$23 \quad V(x, y, z):=I_{y+z}(x, y, z)=(-x+y+z, z, y)$
$13 W(x, y, z):=I_{z+x}(x, y, z)=(z,-y+x+z, x)$
$U, V, W \in G L\left(3, \mathbb{Z}_{12}\right)$
$U=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & -1\end{array}\right), \quad V=\left(\begin{array}{ccc}-1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \quad W=\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0\end{array}\right)$
Definition. The group \mathcal{J} is the subgroup of $G L\left(3, \mathbb{Z}_{12}\right)$ generated by U, V, and W.

The Group $\Sigma_{3} \ltimes \mathcal{J}$ is Generated by Σ_{3} and \mathcal{J}

Proposition

$\left\langle\Sigma_{3}, \mathcal{J}\right\rangle \quad$ in $\quad G L\left(3, \mathbb{Z}_{12}\right) \quad$ is $\quad \Sigma_{3} \ltimes \mathcal{J}$.

Example (Interesting Element in $\Sigma_{3} \ltimes \mathcal{J}$)
RICH $=(13) V \in \Sigma_{3} \ltimes \mathcal{J}$ for all set classes

Example (Clampitt's Hexatonic Reading of First Four Chords of Parsifal Grail Motive)
Want in $\Sigma_{3} \ltimes \mathcal{J}$:

$$
E b \stackrel{P L P}{\longmapsto} b \stackrel{L}{\longmapsto} G \stackrel{P L P}{\longmapsto} e b
$$

Next

Clampitt's Hexatonic Reading of First Four Chords of Parsifal Grail Motive in Orbits of elements in $\Sigma_{3} \ltimes \mathcal{J}$

Clampitt's harmonization of Parsifal Grail Motive and a hexatonic extrapolation of Clampitt's hexatonic reading of the first 4 chords.
The hexagon shows the hexatonic extrapolation as an orbit of a single element of $\Sigma_{3} \ltimes \mathcal{J}$ in four different ways.
NB: Exact voicing is produced by all four ρ 's!

The Structure of \mathcal{J}

The Structure of \mathcal{J}

Theorem (Structure of the Group \mathcal{J}, by F.-Noll)

- The generators U, V, and W satisfy the following relations.
(1) Each of U, V, and W has order 2.
(2) Both composites UV and UW have order 12.
(3) The composite UVW has order 2.
(9) The composites UV and UW commute.
(5) The U-conjugation of $(U V)^{m}$ and $(U W)^{n}$ is inversion.

$$
U^{-1}(U V)^{m} U=(U V)^{-m} \quad U^{-1}(U W)^{n} U=(U W)^{-n}
$$

(continues on next slide)

The Structure of \mathcal{J} Continued

Theorem (Structure of the Group \mathcal{J} Continued, F.-Noll)

- Every element of \mathcal{J} can be written uniquely in the form

$$
\begin{equation*}
U^{k}(U V)^{m}(U W)^{n} \tag{1}
\end{equation*}
$$

where $k=0,1$ and $m, n=0,1, \ldots, 11$.

- $|\mathcal{J}|=288$.
- $\mathcal{J}=\langle U\rangle \ltimes\langle U V, U W\rangle \cong \mathbb{Z}_{2} \ltimes\left(\mathbb{Z}_{12} \times \mathbb{Z}_{12}\right)$
where \mathbb{Z}_{2} acts on $\mathbb{Z}_{12} \times \mathbb{Z}_{12}$ via additive inversion.
- The elements of \mathcal{J} in the normal form of (1) act as follows

$$
\begin{aligned}
& (U V)^{m}(U W)^{n}(x, y, z)=(x, y, z)+m(z-x)+n(z-y) \\
& U(U V)^{m}(U W)^{n}(x, y, z)=U(x, y, z)+m(z-x)+n(z-y) \\
& \text { where } \mathbf{x}+c:=\mathbf{x}+(c, c, c)
\end{aligned}
$$

First Application of the Structure Theorem: Diatonic Falling Fifth Sequence as an Orbit

Find a Single Transformation with Orbit the Diatonic Falling Fifth Sequence

To work in C-major, consider \mathbb{Z}_{7} instead of \mathbb{Z}_{12}, and consider $\mathcal{J}\left(\mathbb{Z}_{7}\right)$ instead of \mathcal{J}.

Encoding: $C \leftrightarrow 0, D \leftrightarrow 1, E \leftrightarrow 2, \ldots$, and finally $B \leftrightarrow 6$ The analogous Structure Theorem for $\mathcal{J}\left(\mathbb{Z}_{7}\right)$ holds.

Question: Use the Structure Theorem to find one matrix in $\Sigma_{3} \ltimes \mathcal{J}\left(\mathbb{Z}_{7}\right)$ with orbit the diatonic falling fifth sequence.

Find a Single Transformation with Orbit the Diatonic Falling Fifth Sequence

Structure Theorem \Rightarrow solve for k, m, n using sequence in

$$
U^{k}(U V)^{m}(U W)^{n}(\mathbf{x})=\mathbf{y}
$$

$\Rightarrow 2$ equations in 2 unknowns
$U(0,2,4)+m(4-0)+n(4-2)=(0,5,3)$
$U(5,0,3)+m(3-5)+n(3-0)=(1,6,3)$
$\Rightarrow m=3$ and $n=0$
$\Rightarrow(12) U(U V)^{3}=\left(\begin{array}{lll}5 & 0 & 3 \\ 4 & 1 & 3 \\ 5 & 1 & 2\end{array}\right)$ produces the diatonic falling
fifth sequence.
Parsifal is similar

Second Application of the Structure Theorem:

A Linear Representation of Hook's Group of Uniform Triadic Transformations

A Linear Representation of Uniform Triadic Transformations

The uniform triadic transformations group

$$
\mathcal{U}:=\{+,-\} \ltimes\left(\mathbb{Z}_{12} \times \mathbb{Z}_{12}\right)
$$

of acts on the set of abstract consonant triads

$$
\mathbb{Z}_{12} \times\{+,-\}
$$

Definition. The Hook group \mathcal{H} is the subgroup of $\Sigma_{3} \ltimes \mathcal{J}$ that maps root position consonant triads to root position consonant triads.

Proposition

The Hook group \mathcal{H} is generated by the two elements (13)U and (13) W.

A Linear Representation of Uniform Triadic Transformations

Theorem (Representation of \mathcal{U}, by F.-Noll)

The map $\rho: \mathcal{U} \rightarrow G L\left(3, \mathbb{Z}_{12}\right)$ defined by

$$
\begin{gathered}
\rho\langle+, 1,0\rangle=(U V)^{4}(U W)^{-1} \\
\rho\langle+, 0,1\rangle=(U V)^{3}(U W)^{1} \\
\rho\langle-, 0,0\rangle=\binom{1}{3} W
\end{gathered}
$$

is a representation of \mathcal{U}.
It operates on root position triads exactly as uniform triadic transformations would.
The representation ρ is an isomorphism onto \mathcal{H}.

Summary of Talk

- Structure Theorem for a matrix group \mathcal{J} generated by voicing reflections
- Motivated by expressing RICH as (13) V in Webern, Concerto for Nine Instruments, Op. 24, Second Movement
- (13) $V=$ RICH exactly
- Economy of description
- Structure Theorem allowed us to find:
- a matrix with orbit the diatonic falling fifth sequence
- four matrices that realize the PLP and L flip-flop in Clampitt's interpretation of Grail sequence
- a linear representation of Hook's group of uniform triadic transformations

