Voicing Transformations and a Linear Representation of Uniform Triadic Transformations

Thomas M. Fiore and Thomas Noll

http://www-personal.umd.umich.edu/~tmfiore/

Preprint on arXiv

Preview

Math Results: Structure Theorem for a certain matrix group \mathcal{J} generated by voicing reflections, the center of \mathcal{J} , the centralizers of \mathcal{J} in $GL(3, \mathbb{Z}_{12})$ and $Aff(3, \mathbb{Z}_{12})$, compatibilities of \mathcal{J} with permutations

Motivation: RICH in Joe Straus' interpretation of Webern, Concerto for Nine Instruments, Op. 24, Second Movement

Applications:

- Find a matrix with orbit the diatonic falling fifth sequence
- Find four matrices that realize the *PLP* and *L* flip-flop in Clampitt's interpretation of Grail sequence
- A linear representation of Hook's group of uniform triadic transformations
- More in the paper.

Motivation for Studying the Group ${\cal J}$

Webern, Concerto for Nine Instruments, Op. 24, Second Movement

Motivation for Studying the Group \mathcal{J} Webern, Concerto for Nine Instruments, Op. 24, Second Movement

The series in this twelve-tone work is constructed from set class 014.

See page 58 of Straus' article *Contextual-Inversion Spaces* for a bracketing of the first 28 measures of the melody into enchained trichords from set class 014.

We draw lines 3 and 4 in temporal order as

Motivation for Studying the Group \mathcal{J} Webern, Concerto for Nine Instruments, Op. 24, Second Movement

Motivation for Studying the Group \mathcal{J} Webern, Concerto for Nine Instruments, Op. 24, Second Movement

Problems with writing "L" and "P" for non-consonant 014 set class:

- we would expect a hexatonic *PL*-cycle, but this is octatonic, not hexatonic
- there is not an obvious root in pitch-class segments
- the definition of "L" and "P" is complex to define for re-orderings of pitch-class segments (first go to prime form, then operate, then come back)

Advantages of writing (13)V for RICH

- Avoid the above.
- Temporal ordering is preserved, (13)V is exactly the retrograde inversion enchaining.
- Economy of description.

Suggests: Contrast Three Different Kinds of Reflection of Consonant Triads I_n , L, and V

Global Reflection I_n : has globally chosen axis of reflection $I_n(0,4,7) = -(0,4,7) + (n,n,n)$ is affine

Contextual Reflection *L*: axis of reflection depends on input chord, look inside triad, find *p* and *q* that differ by a minor third, apply I_{p+q} $L(0,4,7) = I_{4+7}(0,4,7) = (11,7,4)$ $L(7,4,0) = I_{4+7}(7,4,0) = (4,7,11)$ reordered

$$L(\sigma(0,4,7)) = \sigma L \sigma^{-1}(\sigma(0,4,7))$$

Note: input voicing has no effect on output's underlying pcset this description is not in general unambiguous for other pcsegs

Suggests: Contrast Three Different Kinds of Reflection of Consonant Triads I_n , L, and V

Contextual Reflection *L*: axis of reflection depends on input chord, look inside triad, find *p* and *q* that differ by a minor third, apply I_{p+q} $L(0,4,7) = I_{4+7}(0,4,7) = (11,7,4)$ L(C) = e $L(7,4,0) = I_{4+7}(7,4,0) = (4,7,11)$ L(C) = e

reordered

$$L(\sigma(0,4,7)) = \sigma L \sigma^{-1}(\sigma(0,4,7))$$

Note: input voicing has no effect on output's underlying pcset this description is not in general unambiguous for other pcsegs

Voicing Reflection V: axis of reflection depends on tones in 2nd and 3rd voice

$$V(0,4,7) = I_{4+7}(0,4,7) = (11,7,4)$$

 $V(C) = e$
 $V(7,4,0) = I_{4+0}(7,4,0) = (9,0,4)$
Note: input voicing has big effect on output's underlying pcset!
this description is defined on any 3-tuple, and is linear

The Groups $\mathcal J$ and $\Sigma_3\ltimes \mathcal J$

The Group \mathcal{J} is Generated by the Voicing Transformations U, V, and W

The voicing transformations

$$U, V, W \colon \mathbb{Z}_{12}^{\times 3} \longrightarrow \mathbb{Z}_{12}^{\times 3}$$

locally reflect along the axis determined by the tones in two pre-selected voices.

$$\begin{array}{rcl} 12 & U(x,y,z) := I_{x+y}(x,y,z) &=& (y,x,-z+x+y)\\ 23 & V(x,y,z) := I_{y+z}(x,y,z) &=& (-x+y+z,z,y)\\ 13 & W(x,y,z) := I_{z+x}(x,y,z) &=& (z,-y+x+z,x)\\ U,V,W \in GL(3,\mathbb{Z}_{12})\end{array}$$

$$U = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & -1 \end{pmatrix}, \quad V = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad W = \begin{pmatrix} 0 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Definition. The group \mathcal{J} is the subgroup of $GL(3, \mathbb{Z}_{12})$ generated by U, V, and W.

The Group $\Sigma_3 \ltimes \mathcal{J}$ is Generated by Σ_3 and \mathcal{J}

Proposition					
$\langle \Sigma_3, \mathcal{J} \rangle$	in	$GL(3,\mathbb{Z}_{12})$	is	$\Sigma_3 \ltimes \mathcal{J}.$	

Example (Interesting Element in $\Sigma_3 \ltimes \mathcal{J}$)

 $\mathsf{RICH}\ = (13) V \in \Sigma_3 \ltimes \mathcal{J}$ for all set classes

Example (Clampitt's Hexatonic Reading of First Four Chords of Parsifal Grail Motive)

Want in $\Sigma_3 \ltimes \mathcal{J}$:

$$E\flat \stackrel{PLP}{\longmapsto} b \stackrel{L}{\longmapsto} G \stackrel{PLP}{\longmapsto} e\flat$$

Next

Clampitt's Hexatonic Reading of First Four Chords of Parsifal Grail Motive in Orbits of elements in $\Sigma_3 \ltimes \mathcal{J}$

Clampitt's harmonization of Parsifal Grail Motive and a hexatonic extrapolation of Clampitt's hexatonic reading of the first 4 chords.

The hexagon shows the hexatonic extrapolation as an orbit of a single element of $\Sigma_3 \ltimes \mathcal{J}$ in four different ways. NB: *Exact voicing is produced by all four* ρ 's! The Structure of ${\cal J}$

Theorem (Structure of the Group ${\mathcal J}$, by F.-Noll)

- The generators U, V, and W satisfy the following relations.
 - **1** Each of U, V, and W has order 2.
 - 2 Both composites UV and UW have order 12.
 - **3** The composite UVW has order 2.
 - The composites UV and UW commute.
 - **5** The U-conjugation of $(UV)^m$ and $(UW)^n$ is inversion.

 $U^{-1}(UV)^{m}U = (UV)^{-m}$ $U^{-1}(UW)^{n}U = (UW)^{-n}$

(continues on next slide)

The Structure of $\mathcal J$ Continued

Theorem (Structure of the Group \mathcal{J} Continued, F.-Noll)

 \bullet Every element of ${\mathcal J}$ can be written uniquely in the form

$$U^{k}(UV)^{m}(UW)^{n} \tag{1}$$

where k = 0, 1 and $m, n = 0, 1, \dots, 11$.

- $|\mathcal{J}| = 288.$
- J = ⟨U⟩ ⋈ ⟨UV, UW⟩ ≅ ℤ₂ ⋈ (ℤ₁₂ × ℤ₁₂) where ℤ₂ acts on ℤ₁₂ × ℤ₁₂ via additive inversion.
- The elements of $\mathcal J$ in the normal form of (1) act as follows

 $(UV)^{m}(UW)^{n}(x, y, z) = (x, y, z) + m(z - x) + n(z - y)$ $U(UV)^{m}(UW)^{n}(x, y, z) = U(x, y, z) + m(z - x) + n(z - y)$ where **x** + c := **x** + (c, c, c).

First Application of the Structure Theorem: Diatonic Falling Fifth Sequence as an Orbit

Find a Single Transformation with Orbit the Diatonic Falling Fifth Sequence

To work in C-major, consider \mathbb{Z}_7 instead of \mathbb{Z}_{12} , and consider $\mathcal{J}(\mathbb{Z}_7)$ instead of \mathcal{J} .

Encoding: $C \leftrightarrow 0$, $D \leftrightarrow 1$, $E \leftrightarrow 2$, ..., and finally $B \leftrightarrow 6$

The analogous Structure Theorem for $\mathcal{J}(\mathbb{Z}_7)$ holds.

Question: Use the Structure Theorem to find one matrix in $\Sigma_3 \ltimes \mathcal{J}(\mathbb{Z}_7)$ with orbit the diatonic falling fifth sequence.

Find a Single Transformation with Orbit the Diatonic Falling Fifth Sequence

Structure Theorem \Rightarrow solve for k, m, n using sequence in

 $U^k(UV)^m(UW)^n(\mathbf{x}) = \mathbf{y}$

 $\Rightarrow 2 \text{ equations in } 2 \text{ unknowns}$ U(0, 2, 4) + m(4 - 0) + n(4 - 2) = (0, 5, 3)U(5, 0, 3) + m(3 - 5) + n(3 - 0) = (1, 6, 3) $\Rightarrow m = 3 \text{ and } n = 0$ $\Rightarrow (12)U(UV)^3 = \begin{pmatrix} 5 & 0 & 3 \\ 4 & 1 & 3 \\ 5 & 1 & 2 \end{pmatrix} \text{ produces the diatonic falling}$

fifth sequence.

Parsifal is similar

Second Application of the Structure Theorem:

A Linear Representation of Hook's Group of Uniform Triadic Transformations

A Linear Representation of Uniform Triadic Transformations

The uniform triadic transformations group

 $\mathcal{U} := \{+,-\} \ltimes (\mathbb{Z}_{12} \times \mathbb{Z}_{12})$

of acts on the set of abstract consonant triads

 $\mathbb{Z}_{12}\times\{+,-\}.$

Definition. The *Hook group* \mathcal{H} is the subgroup of $\Sigma_3 \ltimes \mathcal{J}$ that maps root position consonant triads to root position consonant triads.

Proposition

The Hook group \mathcal{H} is generated by the two elements $(1\ 3)U$ and $(1\ 3)W$.

A Linear Representation of Uniform Triadic Transformations

Theorem (Representation of \mathcal{U} , by F.-Noll)

The map $\rho \colon \mathcal{U} \to GL(3,\mathbb{Z}_{12})$ defined by

$$ho\langle+,1,0
angle=(UV)^4(UW)^{-1}$$

$$ho\langle +, 0, 1
angle = (UV)^3 (UW)^1$$

 $ho\langle -, 0, 0
angle = (1 3)W$

is a representation of \mathcal{U} .

It operates on root position triads exactly as uniform triadic transformations would.

The representation ρ is an isomorphism onto \mathcal{H} .

Summary of Talk

- \bullet Structure Theorem for a matrix group ${\mathcal J}$ generated by voicing reflections
- Motivated by expressing RICH as (13) V in Webern, Concerto for Nine Instruments, Op. 24, Second Movement
 - (13)V = RICH exactly
 - Economy of description
- Structure Theorem allowed us to find:
 - a matrix with orbit the diatonic falling fifth sequence
 - four matrices that realize the *PLP* and *L* flip-flop in Clampitt's interpretation of Grail sequence
 - a linear representation of Hook's group of uniform triadic transformations