Morphisms in a Musical Analysis of Schoenberg, String Quartet No. 1, Opus 7

Thomas M. Fiore
joint work with Thomas Noll and Ramon Satyendra,

http://www-personal.umd.umich.edu/~tmfiore/
http://user.cs.tu-berlin.de/~noll/
http://ramonsatyendra.net

Transformational Analysis of Schoenberg, String Quartet No. 1, Opus 7

Schoenberg, String Quartet No. 1, Opus 7 Opening Theme Materials, Measures 1-3

octatonic subset

Octatonic set $\{1,2,4,5,7,8,10,11\}$ with subsets

Jet $\{2,1,5\}$	Major $\{10,2,5\}$	Strain $\{10,2,4\}$
Shark $\{1,5,4\}$		

${ }^{9} 5: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{12}$ denotes the affine function $x \mapsto 5 x+9$

Schoenberg, String Quartet No. 1, Opus 7 End of First Section, Measures 88 -92, Major/Minor RP-Cycle

Octatonic set $\{0,1,3,4,6,7,9,10\}$ contains major/minor chords

$$
16 t \stackrel{R}{\longmapsto} 6 t 3 \stackrel{P}{\longmapsto} t 37 \stackrel{R}{\longmapsto} 370 \stackrel{P}{\longmapsto} 704 \stackrel{R}{\longmapsto} 049 \stackrel{P}{\longmapsto} 491 \stackrel{R}{\longmapsto} 916
$$

Consecutive chords have maximal overlap (well known neo-Riemannian operations)
Complete cycle
These major/minor chords are a maximal cover of the octatonic.

Certain Affine Image of Major/Minor RP-Cycle is Jet/Shark RP-Cycle

${ }^{7} 7: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{12}$ denotes the affine map $x \mapsto 7 x+7$.
This maps the octatonic of mm 88-92 to the octatonic of the opening theme, and a $R P$-cycle to a " $R P$-cycle":
triadic series in mm. 88-93

transformation of the triadic series by ${ }^{7} 7$
2154 is in opening theme: Jet 215 and Shark 154.
Note: Affine image of maximally overlapping chords also consists of maximally overlapping chords, cycle \mapsto cycle, maximal cover \mapsto maximal cover

Affine Image is Piece-wide Narrative Constructed from Opening Cell in Measures 1 and 2

1 and 2: Opening violin motive
3 and 4: Fortissimo return of main theme, doubled in all four instruments
5,6 , and 7: Just before major/minor RP-cycle, violin imitation
7 and 8: Return of opening theme in parallel major, with forms 7 and 8 as registral extremes

Further Instance of $R P$-Pattern within Third Octatonic,

 Measures 8 - 10

Third Octatonic $\{2,3,5,6,8,9,11,0\}$ contains major/minor chords

Consecutive chords have maximal overlap (well known neo-Riemannian operations)
However, pattern breaks off before attaining maximal cover.

Desiderata of a Mathematical Theory for this Analysis

To be of use in this analyis, a mathematical theory should:
(1) Associate a neo-Riemannian-type group to 3-tuples $\left(x_{1}, x_{2}, x_{3}\right)$ of pitch-classes, e.g. for $(2,1,5)$ in opening theme
(2) Have attendant theorems about duality with transposition, inversion, and affine maps, e.g. commutation with ${ }^{7} 7$
(3) Show how to move between the associated neo-Riemannian type groups associated to two such 3-tuples $\left(x_{1}, x_{2}, x_{3}\right)$ and (y_{1}, y_{2}, y_{3}) when related by an affine map, e.g. the major $(1,6,10)$ and the jet $(2,1,5)$ related by ${ }^{7} 7$
(4) Show how to obtain substructures of neo-Riemannian type groups, e.g. for octatonic and its maximal major/minor cover or jet/shark cover
(0 Show how to move between these substructures, e.g. between the three octatonics
(0) Determine which subsets of the octatonic set generate maximal covers with simply transitive action under a neo-Riemannian type group action

The Neo-Riemannian PLR-Group

We consider three functions

$$
P, L, R: S \rightarrow S
$$

Let $P(x)$ be that triad of opposite type as x with the first and third notes switched.
For example

$$
\begin{array}{r}
P\langle\mathbf{0}, 4, \mathbf{7}\rangle= \\
P(C \text {-major })=
\end{array}
$$

The set S of consonant triads	
Major Triads	Minor Triads
$C=\langle 0,4,7\rangle$	$\langle 0,8,5\rangle=f$
$C \sharp=D b=\langle 1,5,8\rangle$	$\langle 1,9,6\rangle=f \sharp=g b$
$D=\langle 2,6,9\rangle$	$\langle 2,10,7\rangle=g$
$D \sharp=E b=\langle 3,7,10\rangle$	$\langle 3,11,8\rangle=g \sharp=a b$
$E=\langle 4,8,11\rangle$	$\langle 4,0,9\rangle=a$
$F=\langle 5,9,0\rangle$	$\langle 5,1,10\rangle=a \sharp=b b$
$F \sharp=G b=\langle 6,10,1\rangle$	$\langle 6,2,11\rangle=b$
$G=\langle 7,11,2\rangle$	$\langle 7,3,0\rangle=c$
$G \sharp=A b=\langle 8,0,3\rangle$	$\langle 8,4,1\rangle=c \sharp=d b$
$A=\langle 9,1,4\rangle$	$\langle 9,5,2\rangle=d$
$A \sharp=B b=\langle 10,2,5\rangle$	$\langle 10,6,3\rangle=d \sharp=e b$
$B=\langle 11,3,6\rangle$	$\langle 11,7,4\rangle=e$

We consider three functions

$$
P, L, R: S \rightarrow S
$$

Let $P(x)$ be that triad of opposite type as x with the first and third notes switched.
For example

$$
P\langle\mathbf{0}, 4, \mathbf{7}\rangle=\langle\mathbf{7}, 3, \mathbf{0}\rangle
$$

$P(C$-major $)=c-$ minor

The set S of consonant triads	
Major Triads	Minor Triads
$C=\langle 0,4,7\rangle$	$\langle 0,8,5\rangle=f$
$C \sharp=D b=\langle 1,5,8\rangle$	$\langle 1,9,6\rangle=f \sharp=g b$
$D=\langle 2,6,9\rangle$	$\langle 2,10,7\rangle=g$
$D \sharp=E b=\langle 3,7,10\rangle$	$\langle 3,11,8\rangle=g \sharp=a b$
$E=\langle 4,8,11\rangle$	$\langle 4,0,9\rangle=a$
$F=\langle 5,9,0\rangle$	$\langle 5,1,10\rangle=a \sharp=b b$
$F \sharp=G b=\langle 6,10,1\rangle$	$\langle 6,2,11\rangle=b$
$G=\langle 7,11,2\rangle$	$\langle 7,3,0\rangle=c$
$G \sharp=A b=\langle 8,0,3\rangle$	$\langle 8,4,1\rangle=c \sharp=d b$
$A=\langle 9,1,4\rangle$	$\langle 9,5,2\rangle=d$
$A \sharp=B b=\langle 10,2,5\rangle$	$\langle 10,6,3\rangle=d \sharp=e b$
$B=\langle 11,3,6\rangle$	$\langle 11,7,4\rangle=e$

- Let $L(x)$ be that triad of opposite type as x with the second and third notes switched. For example

$$
\begin{gathered}
L\langle 0, \mathbf{4}, \mathbf{7}\rangle=\langle 11, \mathbf{7}, \mathbf{4}\rangle \\
L(C \text {-major })=\text { e-minor. }
\end{gathered}
$$

- Let $R(x)$ be that triad of opposite type as x with the first and second notes switched. For example

$$
\begin{gathered}
R\langle\mathbf{0}, \mathbf{4}, 7\rangle=\langle\mathbf{4}, \mathbf{0}, 9\rangle \\
R(C \text {-major })=\text { a-minor. }
\end{gathered}
$$

Example: "Oh! Darling" from the Beatles

I'll never do you no harm b7 E7
Be-lieve me when I tell you b7 E7 A
I'll never do you no harm

The Neo-Riemannian PLR-Group and Duality

Definition

The neo-Riemannian PLR-group is the subgroup of permutations of S generated by P, L, and R.

Theorem (Lewin 80's, Hook 2002, ...)

The PLR group is dihedral of order 24 and is generated by L and R.

Theorem (Lewin 80's, Hook 2002, ...)

The PLR group is dual to the T / I group in the sense that each is the centralizer of the other in the symmetric group on the set S of major and minor triads. Moreover, both groups act simply transitively on S.

Extension of Neo-Riemannian Theory

Theorem (Fiore-Satyendra, 2005)

Let $x_{1}, \ldots, x_{n} \in \mathbb{Z}_{m}$ and suppose that there exist x_{q}, x_{r} in the list such that $2\left(x_{q}-x_{r}\right) \neq 0$. Let S be the family of $2 m$ pitch-class segments that are obtained by transposing and inverting the pitch-class segment $X=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Then:
(1) The transposition-inversion group acts simply transitively on S and has order 2 m .
(2) Its centralizer is also dihedral of order $2 m$, and is generated by any PLR-type operation and

$$
Q_{1}(Y):=\left\{\begin{array}{l}
T_{1} Y \text { if } Y \text { is a transposed form of } X \\
T_{-1} Y \text { if } Y \text { is an inverted form of } X
\end{array}\right.
$$

Constructing Sub Dual Groups

Dual Groups

Definition (Dual groups in the sense of Lewin)

Let $\operatorname{Sym}(S)$ be the symmetric group on the set S. Two subgroups G and H of the symmetric group $\operatorname{Sym}(S)$ are called dual if their natural actions on S are simply transitive and each is the centralizer of the other, that is,

$$
C_{\mathrm{Sym}(S)}(G)=H \quad \text { and } \quad C_{\mathrm{Sym}(S)}(H)=G
$$

Example

The T / I-group and the PLR-group are dual in the symmetric group on consonant triads.

Example (Cayley)

All dual groups arise as the left and right multiplication of a group on itself.

Constructing Sub Dual Groups

Theorem (Fiore-Noll, 2011)

Given a pair of dual groups, G and H acting on S, we may easily construct a subdual pair, G_{0} and H_{0} acting on S_{0}, as follows.
(1) Pick $G_{0} \leq G$ and $s_{0} \in S$.
(2) Let $S_{0}:=G_{0} s_{0}$ and $H_{0}:=\left\{h \in H \mid h s_{0} \in S_{0}\right\}$.
(3) Then G_{0} and H_{0} are dual groups acting on S_{0}.
(9) If $k \in H$, and we transform S_{0} to $k S_{0}$, then H_{0} transforms to $k H_{0} k^{-1}$.

Example: $\{C, c\}$

Example

$G=P L R$-group
$H=T / I$-group
$S=$ consonant triads.
(1) Pick $G_{0}=\{I d, P\}$ and $s_{0}=C$.
(2) Then $S_{0}=G_{0} s_{0}=\{C, c\}$ H_{0} consists of solutions to $T_{i} C=C$ and $I_{j} C=c$, $H_{0}=\left\{I d, I_{7}\right\}$.
(3) Then $\{I d, P\}$ and $\left\{I d, I_{7}\right\}$ are dual groups on $\{C, c\}$.
(4) For any $T_{\ell},\{I d, P\}$ and $\left\{I d, T_{\ell} I_{7} T_{-\ell}\right\}$ are dual groups on $\left\{T_{\ell} C, T_{\ell} c\right\}$.

Example: Hexatonic (Cohn 1996) and (Clampitt 1998)

Example

$G=P L R$-group, $H=T / I$-group, $S=$ consonant triads.
(1) Pick $G_{0}=\langle P, L\rangle$ and $s_{0}=E b$.
(2) Then $S_{0}=G_{0} s_{0}=\{E b, e b, B, b, G, g\}$ $H_{0}=\left\{I d, T_{4}, T_{8}, I_{1}, I_{5}, I_{9}\right\}$ consists of solutions to

$$
\begin{aligned}
T_{i} E b & =E b \\
T_{j} E b & =G \\
T_{k} E b & =B
\end{aligned}
$$

$$
I_{\ell} E b=e b
$$

$$
T_{j} E b=G \quad I_{m} E b=g
$$

$$
I_{n} E b=b
$$

(3) Then $\langle P, L\rangle$ and $\left\{I d, T_{4}, T_{8}, I_{1}, I_{5}, I_{9}\right\}$ are dual groups on $\{E b, e b, B, b, G, g\}$.
(9) The transforms are the hyperhexatonic.

Underlying set is $\{2,3,6,7,10,11\}$.

Example: Octatonic

Example

$G=P L R$-group, $H=T / I$-group, $S=$ consonant triads.
(1) Pick $G_{0}=\langle R, P\rangle$ and $s_{0}=G b$.
(2) Then $S_{0}=G_{0} S_{0}=\{G b, e b, E b, c, C, a, A, f \sharp\}$ (measures 88 92 of Schoenberg!)
$H_{0}=\left\{I d, T_{3}, T_{6}, T_{9}, I_{1}, I_{4}, I_{7}, I_{10}\right\}$ by solving equations
(3) Then $\langle R, P\rangle$ and H_{0} are dual groups on $\{G b, e b, E b, c, C, a, A, f \sharp\}$.
(4) The transforms are the hyperoctatonic.

Underlying set is octatonic $\{0,1,3,4,6,7,9,10\}$.

Other Octatonic Covers

Proposition

Any 3-element subset X of the octatonic

$$
\{0,1,3,4,6,7,9,10\} \subset \mathbb{Z}_{12}
$$

generates a simply transitive cover with respect to the set-wise stabilizer $\left\{T_{0}, T_{3}, T_{6}, T_{9}, I_{1}, I_{4}, I_{7}, I_{10}\right\}$.

$$
\begin{aligned}
& \{0,4,7\} \times 1=\{0,4,7\}=\text { major type } \\
& \{0,4,7\} \times 2=\{0,8,2\}=\text { strain type } \\
& \{0,4,7\} \times 5=\{0,8,11\}=\text { shark type } \\
& \{0,4,7\} \times 7=\{0,4,1\}=\text { jet type } \\
& \{0,4,7\} \times 10=\{0,4,10\}=\text { stride type } \\
& \{0,4,7\} \times 11=\{0,8,5\}=\text { minor type }
\end{aligned}
$$

Simply Transitive Groups for Other Octatonic Covers

Only multiples of major chord that have 3 notes:

$$
\begin{aligned}
& \{0,4,7\} \times 1=\{0,4,7\}=\text { major type } \\
& \{0,4,7\} \times 2=\{0,8,2\}=\text { strain type } \\
& \{0,4,7\} \times 5=\{0,8,11\}=\text { shark type } \\
& \{0,4,7\} \times 7=\{0,4,1\}=\text { jet type } \\
& \{0,4,7\} \times 10=\{0,4,10\}=\text { stride type } \\
& \{0,4,7\} \times 11=\{0,8,5\}=\text { minor type }
\end{aligned}
$$

All of these types occur in Schoenberg, String Quartet 1, Opus 7.
Fiore-Satyendra $2005 \Rightarrow$ Each multiple has a neo-Riemannian type group associated to it.

Fiore-Noll $2 \mathrm{O11} \Rightarrow$ Each multiple generates a simply transitive octatonic cover (take dual to set wise octatonic $T / /$ stabilizer).

Morphisms of Simply Transitive Group Actions

Morphisms of Group Actions

Definition (Morphism of Group Actions)

Suppose $\left(G_{1}, S_{1}\right)$ and $\left(G_{2}, S_{2}\right)$ are group actions. A morphism of group actions

$$
(f, \varphi):\left(G_{1}, S_{1}\right) \longrightarrow\left(G_{2}, S_{2}\right)
$$

consists of a function $f: S_{1} \rightarrow S_{2}$ and a group homomorphism $\varphi: G_{1} \rightarrow G_{2}$ such that

$$
\begin{aligned}
& S_{1} \xrightarrow{f} S_{2}
\end{aligned}
$$

commutes for all $g \in G_{1}$.

Affine Maps are Morphisms for Groups Generated by P, L,

 and R-AnaloguesDefinition (Affine Map)
A function $f: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{12}$ is called affine if there exist m and b such that $f(x)=m x+b$ for all $x \in \mathbb{Z}_{12}$.

Proposition

Suppose $f: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{12}$ is affine. Then f commutes with P, L, and R-analogues, that is

$$
P f=f P \quad L f=f L \quad R f=f R
$$

Example

$$
\begin{gathered}
(2,1,5) \stackrel{R}{\longmapsto}(1,5,4) \\
\begin{array}{c}
{ }_{7} \uparrow \\
\uparrow
\end{array} \\
(1,6,10) \stackrel{R}{{ }^{7} 7} \downarrow \\
\hline
\end{gathered}(6,1,3)
$$

Return to Musical Analysis

The Affine Morphism ${ }^{7} 7$ Indicates a Parallel Organization Between the RP Major/Minor Cycle and the Jet-Shark Piece-wide Narrative.

Schoenberg, String Quartet No. 1, op. 7

Schoenberg, String Quartet No. 1, op. 7

