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Schoenberg, String Quartet No. 1, Opus 7

Opening Theme Materials, Measures 1-3
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Octatonic set {1,2,4,5,7,8,10,11} with subsets

Jet {2,1,5} | Major {10,2,5} | Strain {10,2,4}
Shark {1,5,4}
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95 : Z1» — Z1» denotes the affine function x — 5x + 9
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Schoenberg, String Quartet No. 1, Opus 7

End of First Section, Measures 88 - 92, Major/Minor
RP-Cycle
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Octatonic set {0,1,3,4,6,7,9,10} contains major/minor chords

16£ 7 63— £37 " 370 - 704 = 049 - 491 "~ 916

Consecutive chords have maximal overlap (well known
neo-Riemannian operations)

Complete cycle
These major/minor chords are a maximal cover of the octatonic.



Certain Affine Image of Major/Minor RP-Cycle is

Jet/Shark RP-Cycle

"7« Z1o — 715 denotes the affine map x — 7x + 7.
This maps the octatonic of mm 88 - 92 to the octatonic of the
opening theme, and a RP-cycle to a “"RP-cycle”:

triadic series in mm. 88-93
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transformation of the triadic series by ’ 7

2154 is in opening theme: Jet 215 and Shark 154.
Note: Affine image of maximally overlapping chords also consists
of maximally overlapping chords, cycle — cycle, maximal cover —

maximal cover



Affine Image is Piece-wide Narrative Constructed from

Opening Cell in Measures 1 and 2
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1 and 2: Opening violin motive

3 and 4: Fortissimo return of main theme, doubled in all four
instruments

5,6, and 7: Just before major/minor RP-cycle, violin imitation

7 and 8: Return of opening theme in parallel major, with forms 7
and 8 as registral extremes



Further Instance of RP-Pattern within Third Octatonic,
Measures 8 - 10
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Third Octatonic {2,3,5,6,8,9,11,0} contains major/minor chords
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Consecutive chords have maximal overlap (well known

neo-Riemannian operations)
However, pattern breaks off before attaining maximal cover.



Desiderata of a Mathematical Theory for this Analysis

To be of use in this analyis, a mathematical theory should:

@ Associate a neo-Riemannian-type group to 3-tuples (x1, x2, x3)
of pitch-classes, e.g. for (2,1,5) in opening theme

@ Have attendant theorems about duality with transposition,
inversion, and affine maps, e.g. commutation with 7

© Show how to move between the associated neo-Riemannian
type groups associated to two such 3-tuples (xi, x2, x3) and
(y1, Y2, y3) when related by an affine map, e.g. the major
(1,6,10) and the jet (2,1,5) related by ’7

© Show how to obtain substructures of neo-Riemannian type
groups, e.g. for octatonic and its maximal major/minor cover
or jet/shark cover

© Show how to move between these substructures, e.g. between
the three octatonics

@ Determine which subsets of the octatonic set generate
maximal covers with simply transitive action under a
neo-Riemannian type group action



The Neo-Riemannian PLR-Group



We consider three
functions

P,LLR:S —S.

Let P(x) be that
triad of opposite
type as x with the
first and third
notes switched.
For example
P(0,4,7) =
P(C-major) =

The Neo-Riemannian Transformation P

The set S of consonant triads

Major Triads | Minor Triads
C=1(0,4,7) | (0,8,5) =1
Ct=Db=(1,58) | (1,9,6) =t =gb
D = <2a 679> <27 1077> =8
Dt = Eb=(3,7,10) | (3,11,8) = gff = ab
E=(4,8,11) | (4,0,9) =a

F=(5,9,0) | (51,10) = af = bd
Ft=Gb=(6,10,1) | (6,2,11) =b
G=(7,11,2) | (7,3,0) =
Gf=Ab=(8,0,3) | (8,4,1) =ctt=db
A=1(9,1,4) | (9,5,2) =d
At = Bb = (10,2,5) | (10,6,3) = df = eb
B=(11,3,6) | (11,7,4) =e




The Neo-Riemannian Transformation P

We consider three

functions The set S of consonant triads
Major Triads | Minor Triads
) C=1(0,4,7) | (0,8,5) =1
PLR:S=5. Ct=Db=1(1,5,8) | (1,9,6) = ft — gb
D: <2a679> <271077> =8
Let P(x) be that Dt = Eb = (3,7,10) | (3,11,8) = gt = ab
triad of opposite E=(4,8,11) | (4,0,9) = a
type as x with the F=(5,9,0) | (5,1,10) = aff = bb
first and third Ft=Gb=(6,10,1) | (6,2,11) =b
notes switched. G=(7,11,2) | (7,3,0) =¢
For example Gﬁ =A = <8a 073> <8747 1> = Cﬁ =db
P(0,4,7) = (7,3,0) A=1(9,1,4) | (9,5,2) =d
_ _ At = Bb = (10,2,5) | (10,6,3) = df = eb
P(C-major) = c-minor B— (11.3,6) | (11,7,4) — e




The Neo-Riemannian Transformations L and R

o Let L(x) be that triad of opposite type as x with the second
and third notes switched. For example

L<07 4’ 7> = <117 77 4>
L(C-major) = e-minor.

o Let R(x) be that triad of opposite type as x with the first and
second notes switched. For example

R(0,4,7) = (4,0,9)

R(C-major) = a-minor.



Example: “Oh! Darling” from the Beatles

E+ A E
Oh____ Darling please believe me
f D
I'll never do you no harm

b7 E7
Be-lieve me when | tell you
b7 Ev A

I'll never do you no harm



The Neo-Riemannian PLR-Group and Duality

Definition

The neo-Riemannian PLR-group is the subgroup of permutations
of S generated by P,L, and R.

Theorem (Lewin 80's, Hook 2002, ...)

The PLR group is dihedral of order 24 and is generated by L and
R.

Theorem (Lewin 80's, Hook 2002, ...)

The PLR group is dual to the T /I group in the sense that each is
the centralizer of the other in the symmetric group on the set S of
major and minor triads. Moreover, both groups act simply
transitively on S.




Extension of Neo-Riemannian Theory

Theorem (Fiore-Satyendra, 2005)
Let x1,...,Xn € Zm and suppose that there exist xq, X, in the list
such that 2(xq — x;) # 0. Let S be the family of 2m pitch-class
segments that are obtained by transposing and inverting the
pitch-class segment X = (x1,...,%n). Then:
@ The transposition-inversion group acts simply transitively on S
and has order 2m.
@ Its centralizer is also dihedral of order 2m, and is generated by
any PLR-type operation and

Qu(Y) = T.Y if Y is a transposed form of X
W= 0 7Y 15 e doveres) (o @755




Constructing Sub Dual Groups



Dual Groups

Definition (Dual groups in the sense of Lewin)

Let Sym(S) be the symmetric group on the set S. Two subgroups
G and H of the symmetric group Sym(S) are called dual if their
natural actions on S are simply transitive and each is the
centralizer of the other, that is,

CSym(S)(G) = H and CSym(S)(H) = G.

The T /l-group and the PLR-group are dual in the symmetric
group on consonant triads.

Example (Cayley)

All dual groups arise as the left and right multiplication of a group
on itself.




Constructing Sub Dual Groups

Theorem (Fiore-Noll, 2011)

Given a pair of dual groups, G and H acting on S, we may easily
construct a subdual pair, Gg and Hy acting on Sy, as follows.

@ Pick Go < G and sp € S.
Q Let So := Ggsg and Hy := {h € H| hsy € So}.
© Then Gy and Hy are dual groups acting on Sp.

Q If k € H, and we transform Sy to kSg, then Hy transforms to
kHok1.




Example: {C,c}

Example
G = PLR-group
H = T/I-group

S = consonant triads.

Q Pick Gy = {ld,P} and so = C.

@ Then Sy = Gysp = {C, ¢}
Ho consists of solutions to T;C = C and [;C = c,
Ho = {Id, I}

© Then {Id, P} and {Id, I;} are dual groups on {C,c}.

Q For any Ty, {Id, P} and {Ild, Tyl T_s} are dual groups on
{Tg C, Tgc}.




Example: Hexatonic (Cohn 1996) and (Clampitt 1998)

G = PLR-group, H = T /l-group, S = consonant triads.
Q Pick Go = (P, L) and sy = Eb.

@ Then Sy = Gosy = {Eb,eb, B, b, G, g}
Ho = {ld, Ta, Tg, h, s, Iy} consists of solutions to

T:Eb = Eb I,Eb = eb
T,Erh=G InEb = g
T.Eb=B I,Eb = b.

© Then (P,L) and {Id, T4, Tg, h, Is, lo} are dual groups on
{Eb,eb,B,b,G,g}.
@Q The transforms are the hyperhexatonic.

Underlying set is {2,3,6,7,10,11}.



Example: Octatonic

G = PLR-group, H = T /I-group, S = consonant triads.
@ Pick Go = (R, P) and sy = Gb.
@ Then Sy = Gosp = {Gb, eb, Eb,c, C,a, A, ft} (measures 88 -
92 of Schoenberg!)
Hy = {Id7 T3, Te, To, i, Iy, I7, /10} by solving equations
© Then (R, P) and Hy are dual groups on
{Gb, eb, Eb,c,C,a,A,ft}.

@ The transforms are the hyperoctatonic.

Underlying set is octatonic {0,1,3,4,6,7,9,10}.



Other Octatonic Covers

Any 3-element subset X of the octatonic

{0,1,3,4,6,7,9,10} C Z1»

generates a simply transitive cover with respect to the set-wise
stabilizer {Tg, T3, Te, To, I, In, I7, /10}.

{0,4,7} x1 = {0,4,7} = major type
{0,4,7} x2 = {0,8,2} = strain type
{0,4,7} x5 = {0,8,11} = shark type
{0,4,7} x7 = {0,4,1} = jet type

{0,4,7} x 10 = {0,4,10} = stride type
{0,4,7} x 11 = {0,8,5} = minor type.



Simply Transitive Groups for Other Octatonic Covers

Only multiples of major chord that have 3 notes:

{0,4,7} x 1
{0,4,7} x 2
{0,4,7} x 5
{0,4,7} x 7
{0,4,7} x 10
{0,4,7} x 11

{0,4,7}
{0,8,2}
{0,8,11}
{0,4,1}
{0, 4,10}
{0,8,5)

= major type

strain type
shark type
jet type

stride type

= minor type.

All of these types occur in Schoenberg, String Quartet 1, Opus 7.

Fiore—Satyendra 2005 = Each multiple has a neo-Riemannian type

group associated to it.

Fiore—Noll 2011 = Each multiple generates a simply transitive
octatonic cover (take dual to set wise octatonic T /[ stabilizer).



Morphisms of Simply Transitive Group Actions



Morphisms of Group Actions

Definition (Morphism of Group Actions)

Suppose (G1, S1) and (G, S2) are group actions. A morphism of
group actions

(f,0): (G1,51) —— (G2, S2)

consists of a function f: S; — Sy and a group homomorphism
p: Gi — Gy such that

51*f>52

d o

SlLSQ

commutes for all g € G.




Affine Maps are Morphisms for Groups Generated by P, L,
and R-Analogues

Definition (Affine Map)

A function f : Z1o — Z12 is called affine if there exist m and b
such that f(x) = mx + b for all x € Z12.

Proposition

Suppose f : Z1p — Z1o is affine. Then f commutes with P, L, and
R-analogues, that is

Pf = fP Lf =1L Rf = fR.

Example

(2,1,5)——(1,5,4)

[ ]
(1,6,10) —— (6,1,3)



Return to Musical Analysis



The Affine Morphism 77 Indicates a Parallel Organization
Between the RP Major/Minor Cycle and the Jet-Shark

Piece-wide Narrative.
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tal Network

Schoenberg, String Quartet No. 1, op. 7
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Schoenberg, String Quartet No. 1, op. 7
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