Morphisms in a Musical Analysis of Schoenberg, String Quartet No. 1, Opus 7

Thomas M. Fiore joint work with Thomas Noll and Ramon Satyendra,

http://www-personal.umd.umich.edu/~tmfiore/
 http://user.cs.tu-berlin.de/~noll/
 http://ramonsatyendra.net

Transformational Analysis of Schoenberg, String Quartet No. 1, Opus 7

Schoenberg, String Quartet No. 1, Opus 7 Opening Theme Materials, Measures 1-3

Octatonic set $\{1,2,4,5,7,8,10,11\}$ with subsets

Jet $\{2, 1, 5\}$	Major {10, 2, 5}	Strain $\{10, 2, 4\}$
Shark $\{1, 5, 4\}$		

 ${}^95:\mathbb{Z}_{12}
ightarrow\mathbb{Z}_{12}$ denotes the affine function $x\mapsto 5x+9$

Schoenberg, String Quartet No. 1, Opus 7 End of First Section, Measures 88 - 92, Major/Minor *RP*-Cycle

Octatonic set $\{0, 1, 3, 4, 6, 7, 9, 10\}$ contains major/minor chords

$$16t \stackrel{R}{\longmapsto} 6t3 \stackrel{P}{\longmapsto} t37 \stackrel{R}{\longmapsto} 370 \stackrel{P}{\longmapsto} 704 \stackrel{R}{\longmapsto} 049 \stackrel{P}{\longmapsto} 491 \stackrel{R}{\longmapsto} 916$$

Consecutive chords have maximal overlap (well known neo-Riemannian operations) Complete cycle These major/minor chords are a maximal cover of the octatonic.

Certain Affine Image of Major/Minor *RP*-Cycle is Jet/Shark *RP*-Cycle

⁷7 : $\mathbb{Z}_{12} \to \mathbb{Z}_{12}$ denotes the affine map $x \mapsto 7x + 7$. This maps the octatonic of mm 88 - 92 to the octatonic of the opening theme, and a *RP*-cycle to a "*RP*-cycle":

transformation of the triadic series by 77

2154 is in opening theme: Jet 215 and Shark 154.

Note: Affine image of maximally overlapping chords also consists of maximally overlapping chords, cycle \mapsto cycle, maximal cover \mapsto maximal cover

Affine Image is Piece-wide Narrative Constructed from Opening Cell in Measures 1 and 2

1 and 2: Opening violin motive

3 and 4: *Fortissimo* return of main theme, doubled in all four instruments

5,6, and 7: Just before major/minor RP-cycle, violin imitation 7 and 8: Return of opening theme in parallel major, with forms 7 and 8 as registral extremes

Further Instance of *RP*-Pattern within Third Octatonic, Measures 8 - 10

Third Octatonic $\{2, 3, 5, 6, 8, 9, 11, 0\}$ contains major/minor chords

Consecutive chords have maximal overlap (well known neo-Riemannian operations) However, pattern breaks off before attaining maximal cover.

Desiderata of a Mathematical Theory for this Analysis

To be of use in this analyis, a mathematical theory should:

- Associate a neo-Riemannian-type group to 3-tuples (x₁, x₂, x₃) of pitch-classes, e.g. for (2,1,5) in opening theme
- Have attendant theorems about duality with transposition, inversion, and affine maps, e.g. commutation with ⁷7
- Show how to move between the associated neo-Riemannian type groups associated to *two* such 3-tuples (x₁, x₂, x₃) and (y₁, y₂, y₃) when related by an affine map, e.g. the major (1, 6, 10) and the jet (2, 1, 5) related by ⁷7
- Show how to obtain substructures of neo-Riemannian type groups, e.g. for octatonic and its maximal major/minor cover or jet/shark cover
- Show how to move between these substructures, e.g. between the three octatonics
- Determine which subsets of the octatonic set generate maximal covers with simply transitive action under a neo-Riemannian type group action

The Neo-Riemannian PLR-Group

We consider three functions

 $P, L, R: S \rightarrow S.$

Let P(x) be that triad of opposite type as x with the first and third notes switched. For example $P\langle \mathbf{0}, 4, \mathbf{7} \rangle =$ P(C-major) =

The set S of consonant triads		
Major Triads	Minor Triads	
$C = \langle 0, 4, 7 \rangle$	$\langle 0, 8, 5 \rangle = f$	
$C \sharp = D \flat = \langle 1, 5, 8 \rangle$	$\langle 1,9,6 angle = f \sharp = g \flat$	
$D = \langle 2, 6, 9 \rangle$	$\langle 2, 10, 7 \rangle = g$	
$D\sharp = E\flat = \langle 3, 7, 10 \rangle$	$\langle 3,11,8 angle = g \sharp = a \flat$	
$E = \langle 4, 8, 11 angle$	$\langle 4,0,9 angle = a$	
$F=\langle 5,9,0 angle$	$\langle 5,1,10 angle = a \sharp = b \flat$	
$F \sharp = G \flat = \langle 6, 10, 1 \rangle$	$\langle 6,2,11 angle =b$	
$G=\langle 7,11,2 angle$	$\langle 7,3,0 angle = c$	
$G \sharp = A \flat = \langle 8, 0, 3 \rangle$	$\langle 8,4,1 angle = c \sharp = d \flat$	
$A = \langle 9, 1, 4 \rangle$	$\langle 9, 5, 2 \rangle = d$	
$A\sharp = B\flat = \langle 10, 2, 5 \rangle$	$\langle 10, 6, 3 angle = d \sharp = e \flat$	
$B=\langle 11,3,6 angle$	$\langle 11,7,4 angle=e$	

We consider three functions

 $P, L, R: S \rightarrow S.$

Let P(x) be that triad of opposite type as x with the first and third notes switched. For example $P\langle \mathbf{0}, 4, \mathbf{7} \rangle = \langle \mathbf{7}, 3, \mathbf{0} \rangle$ P(C-major) = c-minor

The set S of consonant triads		
Major Triads	Minor Triads	
$C = \langle 0, 4, 7 \rangle$	$\langle 0, 8, 5 \rangle = f$	
$C \sharp = D \flat = \langle 1, 5, 8 angle$	$\langle 1,9,6 angle = f\sharp = g\flat$	
$D = \langle 2, 6, 9 \rangle$	$\langle 2, 10, 7 \rangle = g$	
$D\sharp = E\flat = \langle 3, 7, 10 \rangle$	$\langle 3, 11, 8 angle = g \sharp = a \flat$	
$E = \langle 4, 8, 11 angle$	$\langle 4,0,9 angle = a$	
$F=\langle 5,9,0 angle$	$\langle 5,1,10 angle = a\sharp = b\flat$	
$F \sharp = G \flat = \langle 6, 10, 1 \rangle$	$\langle 6,2,11 angle =b$	
$G=\langle 7,11,2 angle$	$\langle 7,3,0 angle = c$	
$G \sharp = A \flat = \langle 8, 0, 3 angle$	$\langle 8,4,1 angle = c \sharp = d \flat$	
$A=\langle 9,1,4 angle$	$\langle 9, 5, 2 \rangle = d$	
$A\sharp=B\flat=\langle 10,2,5 angle$	$\langle 10, 6, 3 angle = d \sharp = e \flat$	
$B=\langle 11,3,6 angle$	$\langle 11,7,4 angle = e$	

The Neo-Riemannian Transformations L and R

• Let L(x) be that triad of opposite type as x with the second and third notes switched. For example

> $L\langle 0, \mathbf{4}, \mathbf{7} \rangle = \langle 11, \mathbf{7}, \mathbf{4} \rangle$ L(C-major) = e-minor.

• Let R(x) be that triad of opposite type as x with the first and second notes switched. For example

 $R\langle \mathbf{0},\mathbf{4},7
angle = \langle \mathbf{4},\mathbf{0},9
angle$

R(C-major) = a-minor.

Example: "Oh! Darling" from the Beatles

E+AEOh
 $_$ Darling please believe me $f \sharp$ DI'll never do you no harm
b7E7Be-lieve me when I tell youb7E7AI'll never do you no harm

Definition

The neo-Riemannian PLR-group is the subgroup of permutations of S generated by P,L, and R.

Theorem (Lewin 80's, Hook 2002, ...)

The PLR group is dihedral of order 24 and is generated by L and R.

Theorem (Lewin 80's, Hook 2002, ...)

The PLR group is dual to the T/I group in the sense that each is the centralizer of the other in the symmetric group on the set S of major and minor triads. Moreover, both groups act simply transitively on S.

Theorem (Fiore–Satyendra, 2005)

Let $x_1, \ldots, x_n \in \mathbb{Z}_m$ and suppose that there exist x_q, x_r in the list such that $2(x_q - x_r) \neq 0$. Let S be the family of 2m pitch-class segments that are obtained by transposing and inverting the pitch-class segment $X = \langle x_1, \ldots, x_n \rangle$. Then:

- The transposition-inversion group acts simply transitively on S and has order 2m.
- Its centralizer is also dihedral of order 2m, and is generated by any PLR-type operation and

 $Q_1(Y) := \begin{cases} T_1 Y \text{ if } Y \text{ is a transposed form of } X \\ T_{-1} Y \text{ if } Y \text{ is an inverted form of } X. \end{cases}$

Constructing Sub Dual Groups

Definition (Dual groups in the sense of Lewin)

Let Sym(S) be the symmetric group on the set S. Two subgroups G and H of the symmetric group Sym(S) are called *dual* if their natural actions on S are simply transitive and each is the centralizer of the other, that is,

$$C_{\operatorname{Sym}(\mathcal{S})}(G) = H$$
 and $C_{\operatorname{Sym}(\mathcal{S})}(H) = G$.

Example

The T/I-group and the PLR-group are dual in the symmetric group on consonant triads.

Example (Cayley)

All dual groups arise as the left and right multiplication of a group on itself.

Theorem (Fiore–Noll, 2011)

Given a pair of dual groups, G and H acting on S, we may easily construct a subdual pair, G_0 and H_0 acting on S_0 , as follows.

• Pick
$$G_0 \leq G$$
 and $s_0 \in S$.

2 Let
$$S_0 := G_0 s_0$$
 and $H_0 := \{h \in H \mid hs_0 \in S_0\}.$

- **(3)** Then G_0 and H_0 are dual groups acting on S_0 .
- If $k \in H$, and we transform S_0 to kS_0 , then H_0 transforms to kH_0k^{-1} .

Example: $\{C, c\}$

Example

- G = PLR-group
- H = T/I-group
- S = consonant triads.

• Pick
$$G_0 = \{ Id, P \}$$
 and $s_0 = C$.

- Then $\{Id, P\}$ and $\{Id, I_7\}$ are dual groups on $\{C, c\}$.
- For any T_{ℓ} , {Id, P} and {Id, $T_{\ell}I_7T_{-\ell}$ } are dual groups on $\{T_{\ell}C, T_{\ell}c\}$.

Example: Hexatonic (Cohn 1996) and (Clampitt 1998)

Example

$$G = PLR$$
-group, $H = T/I$ -group, $S = consonant$ triads.

• Pick
$$G_0 = \langle P, L \rangle$$
 and $s_0 = E \flat$.

2 Then
$$S_0 = G_0 s_0 = \{E\flat, e\flat, B, b, G, g\}$$

 $H_0 = \{Id, T_4, T_8, I_1, I_5, I_9\}$ consists of solutions to

$$T_iEb = Eb \qquad I_\ell Eb = eb$$

$$T_jEb = G \qquad I_mEb = g$$

$$T_kEb = B \qquad I_nEb = b.$$

- Then $\langle P, L \rangle$ and $\{Id, T_4, T_8, I_1, I_5, I_9\}$ are dual groups on $\{E\flat, e\flat, B, b, G, g\}$.
- The transforms are the hyperhexatonic.

Underlying set is $\{2, 3, 6, 7, 10, 11\}$.

Example

G = PLR-group, H = T/I-group, S = consonant triads.

1 Pick
$$G_0 = \langle R, P \rangle$$
 and $s_0 = G \flat$.

- Then S₀ = G₀s₀ = {G^b, e^b, E^b, c, C, a, A, f[‡]} (measures 88 92 of Schoenberg!) H₀ = {Id, T₃, T₆, T₉, I₁, I₄, I₇, I₁₀} by solving equations
- Then ⟨R, P⟩ and H₀ are dual groups on {G♭, e♭, E♭, c, C, a, A, f♯}.
- The transforms are the hyperoctatonic.

Underlying set is octatonic $\{0, 1, 3, 4, 6, 7, 9, 10\}$.

Other Octatonic Covers

Proposition

Any 3-element subset X of the octatonic

 $\{0,1,3,4,6,7,9,10\} \subset \mathbb{Z}_{12}$

generates a simply transitive cover with respect to the set-wise stabilizer $\{T_0, T_3, T_6, T_9, I_1, I_4, I_7, I_{10}\}$.

$$\{0,4,7\} \times 1 = \{0,4,7\} = \text{major type} \\ \{0,4,7\} \times 2 = \{0,8,2\} = \text{strain type} \\ \{0,4,7\} \times 5 = \{0,8,11\} = \text{shark type} \\ \{0,4,7\} \times 7 = \{0,4,1\} = \text{jet type} \\ \{0,4,7\} \times 10 = \{0,4,10\} = \text{stride type} \\ \{0,4,7\} \times 11 = \{0,8,5\} = \text{minor type.}$$

Simply Transitive Groups for Other Octatonic Covers

Only multiples of major chord that have 3 notes:

$$\{0,4,7\} \times 1 = \{0,4,7\} = \text{major type} \\ \{0,4,7\} \times 2 = \{0,8,2\} = \text{strain type} \\ \{0,4,7\} \times 5 = \{0,8,11\} = \text{shark type} \\ \{0,4,7\} \times 7 = \{0,4,1\} = \text{jet type} \\ \{0,4,7\} \times 10 = \{0,4,10\} = \text{stride type} \\ \{0,4,7\} \times 11 = \{0,8,5\} = \text{minor type.}$$

All of these types occur in Schoenberg, String Quartet 1, Opus 7.

Fiore–Satyendra 2005 \Rightarrow Each multiple has a neo-Riemannian type group associated to it.

Fiore–Noll 2011 \Rightarrow Each multiple generates a simply transitive octatonic cover (take dual to set wise octatonic T/I stabilizer).

Morphisms of Simply Transitive Group Actions

Definition (Morphism of Group Actions)

Suppose (G_1, S_1) and (G_2, S_2) are group actions. A morphism of group actions

$$(f,\varphi)\colon (G_1,S_1)\longrightarrow (G_2,S_2)$$

consists of a function $f:S_1\to S_2$ and a group homomorphism $\varphi\colon G_1\to G_2$ such that

commutes for all $g \in G_1$.

Affine Maps are Morphisms for Groups Generated by P, L, and R-Analogues

Definition (Affine Map)

A function $f : \mathbb{Z}_{12} \to \mathbb{Z}_{12}$ is called **affine** if there exist *m* and *b* such that f(x) = mx + b for all $x \in \mathbb{Z}_{12}$.

Proposition

Suppose $f:\mathbb{Z}_{12}\to\mathbb{Z}_{12}$ is affine. Then f commutes with P, L, and R-analogues, that is

$$Pf = fP$$
 $Lf = fL$ $Rf = fR$.

Example

$$(2,1,5) \xrightarrow{R} (1,5,4)$$

$$\xrightarrow{77} \qquad \xrightarrow{77} \qquad (1,6,10) \xrightarrow{R} (6,1,3)$$

Return to Musical Analysis

The Affine Morphism ⁷7 Indicates a Parallel Organization Between the *RP* Major/Minor Cycle and the Jet-Shark Piece-wide Narrative.

triadic series in mm. 88-93

transformation of the triadic series by 77

Total Network

RICH RICH RICH RICH RICH RICH shark-jet 215 154 548 870 487 701 eta motive 771 77 77 77 77 77 77 P R Р R Р R triadic motive t31 370 704 161 603 ²1 21 ²1 21 21 R Р R Р triadic motive 592 926 380 41 R Р R Р triadic motive 704 049 916 161 '10 JL ¹10 '10 RICH RICH stride-strain 046 104 461 motive ³1 RICH RICH stride-strain 137 379 791 motive

Schoenberg, String Quartet No. 1, op. 7

Total Network

Schoenberg, String Quartet No. 1, op. 7

