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Transformational Analysis of Schoenberg,
String Quartet No. 1, Opus 7



Schoenberg, String Quartet No. 1, Opus 7
Opening Theme Materials, Measures 1-3
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Octatonic set {1, 2, 4, 5, 7, 8, 10, 11} with subsets

Jet {2, 1, 5} Major {10, 2, 5} Strain {10, 2, 4}
Shark {1, 5, 4}

95 : Z12 → Z12 denotes the affine function x 7→ 5x + 9



Schoenberg, String Quartet No. 1, Opus 7
End of First Section, Measures 88 - 92, Major/Minor
RP-Cycle
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Octatonic set {0, 1, 3, 4, 6, 7, 9, 10} contains major/minor chords

16t
� R // 6t3

� P // t37
� R // 370

� P // 704
� R // 049

� P // 491
� R // 916

Consecutive chords have maximal overlap (well known
neo-Riemannian operations)
Complete cycle
These major/minor chords are a maximal cover of the octatonic.



Certain Affine Image of Major/Minor RP-Cycle is
Jet/Shark RP-Cycle

77 : Z12 → Z12 denotes the affine map x 7→ 7x + 7.
This maps the octatonic of mm 88 - 92 to the octatonic of the
opening theme, and a RP-cycle to a “RP-cycle”:
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&
triadic series in mm. 88-93 

&

transformation of the triadic series by 
7
7
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2154 is in opening theme: Jet 215 and Shark 154.
Note: Affine image of maximally overlapping chords also consists
of maximally overlapping chords, cycle 7→ cycle, maximal cover 7→
maximal cover



Affine Image is Piece-wide Narrative Constructed from
Opening Cell in Measures 1 and 2
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1 and 2: Opening violin motive
3 and 4: Fortissimo return of main theme, doubled in all four
instruments
5,6, and 7: Just before major/minor RP-cycle, violin imitation
7 and 8: Return of opening theme in parallel major, with forms 7
and 8 as registral extremes



Further Instance of RP-Pattern within Third Octatonic,
Measures 8 - 10
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Third Octatonic {2, 3, 5, 6, 8, 9, 11, 0} contains major/minor chords

Consecutive chords have maximal overlap (well known
neo-Riemannian operations)
However, pattern breaks off before attaining maximal cover.



Desiderata of a Mathematical Theory for this Analysis

To be of use in this analyis, a mathematical theory should:
1 Associate a neo-Riemannian-type group to 3-tuples (x1, x2, x3)

of pitch-classes, e.g. for (2,1,5) in opening theme
2 Have attendant theorems about duality with transposition,

inversion, and affine maps, e.g. commutation with 77
3 Show how to move between the associated neo-Riemannian

type groups associated to two such 3-tuples (x1, x2, x3) and
(y1, y2, y3) when related by an affine map, e.g. the major
(1, 6, 10) and the jet (2, 1, 5) related by 77

4 Show how to obtain substructures of neo-Riemannian type
groups, e.g. for octatonic and its maximal major/minor cover
or jet/shark cover

5 Show how to move between these substructures, e.g. between
the three octatonics

6 Determine which subsets of the octatonic set generate
maximal covers with simply transitive action under a
neo-Riemannian type group action



The Neo-Riemannian PLR-Group



The Neo-Riemannian Transformation P

We consider three
functions

P, L,R : S → S .

Let P(x) be that
triad of opposite
type as x with the
first and third
notes switched.
For example

P〈0, 4, 7〉 =

P(C -major) =

The set S of consonant triads
Major Triads Minor Triads
C = 〈0, 4, 7〉 〈0, 8, 5〉 = f

C ] = D[ = 〈1, 5, 8〉 〈1, 9, 6〉 = f ] = g[
D = 〈2, 6, 9〉 〈2, 10, 7〉 = g

D] = E [ = 〈3, 7, 10〉 〈3, 11, 8〉 = g] = a[
E = 〈4, 8, 11〉 〈4, 0, 9〉 = a

F = 〈5, 9, 0〉 〈5, 1, 10〉 = a] = b[
F ] = G [ = 〈6, 10, 1〉 〈6, 2, 11〉 = b

G = 〈7, 11, 2〉 〈7, 3, 0〉 = c
G ] = A[ = 〈8, 0, 3〉 〈8, 4, 1〉 = c] = d[

A = 〈9, 1, 4〉 〈9, 5, 2〉 = d
A] = B[ = 〈10, 2, 5〉 〈10, 6, 3〉 = d] = e[

B = 〈11, 3, 6〉 〈11, 7, 4〉 = e



The Neo-Riemannian Transformation P

We consider three
functions

P, L,R : S → S .

Let P(x) be that
triad of opposite
type as x with the
first and third
notes switched.
For example

P〈0, 4, 7〉 = 〈7, 3, 0〉
P(C -major) = c-minor

The set S of consonant triads
Major Triads Minor Triads
C = 〈0, 4, 7〉 〈0, 8, 5〉 = f

C ] = D[ = 〈1, 5, 8〉 〈1, 9, 6〉 = f ] = g[
D = 〈2, 6, 9〉 〈2, 10, 7〉 = g

D] = E [ = 〈3, 7, 10〉 〈3, 11, 8〉 = g] = a[
E = 〈4, 8, 11〉 〈4, 0, 9〉 = a

F = 〈5, 9, 0〉 〈5, 1, 10〉 = a] = b[
F ] = G [ = 〈6, 10, 1〉 〈6, 2, 11〉 = b

G = 〈7, 11, 2〉 〈7, 3, 0〉 = c
G ] = A[ = 〈8, 0, 3〉 〈8, 4, 1〉 = c] = d[

A = 〈9, 1, 4〉 〈9, 5, 2〉 = d
A] = B[ = 〈10, 2, 5〉 〈10, 6, 3〉 = d] = e[

B = 〈11, 3, 6〉 〈11, 7, 4〉 = e



The Neo-Riemannian Transformations L and R

Let L(x) be that triad of opposite type as x with the second
and third notes switched. For example

L〈0, 4, 7〉 = 〈11, 7, 4〉

L(C -major) = e-minor.

Let R(x) be that triad of opposite type as x with the first and
second notes switched. For example

R〈0, 4, 7〉 = 〈4, 0, 9〉

R(C -major) = a-minor.



Example: “Oh! Darling” from the Beatles

ONMLHIJKf ]
L //ONMLHIJKD

R //ONMLHIJKb
P◦R◦L //ONMLHIJKE

E + A E
Oh Darling please believe me
f ] D
I’ll never do you no harm

b7 E 7
Be-lieve me when I tell you
b7 E 7 A

I’ll never do you no harm



The Neo-Riemannian PLR-Group and Duality

Definition

The neo-Riemannian PLR-group is the subgroup of permutations
of S generated by P,L, and R.

Theorem (Lewin 80’s, Hook 2002, ...)

The PLR group is dihedral of order 24 and is generated by L and
R.

Theorem (Lewin 80’s, Hook 2002, ...)

The PLR group is dual to the T/I group in the sense that each is
the centralizer of the other in the symmetric group on the set S of
major and minor triads. Moreover, both groups act simply
transitively on S.



Extension of Neo-Riemannian Theory

Theorem (Fiore–Satyendra, 2005)

Let x1, . . . , xn ∈ Zm and suppose that there exist xq, xr in the list
such that 2(xq − xr ) 6= 0. Let S be the family of 2m pitch-class
segments that are obtained by transposing and inverting the
pitch-class segment X = 〈x1, . . . , xn〉. Then:

1 The transposition-inversion group acts simply transitively on S
and has order 2m.

2 Its centralizer is also dihedral of order 2m, and is generated by
any PLR-type operation and

Q1(Y ) :=

{
T1Y if Y is a transposed form of X

T−1Y if Y is an inverted form of X .



Constructing Sub Dual Groups



Dual Groups

Definition (Dual groups in the sense of Lewin)

Let Sym(S) be the symmetric group on the set S . Two subgroups
G and H of the symmetric group Sym(S) are called dual if their
natural actions on S are simply transitive and each is the
centralizer of the other, that is,

CSym(S)(G ) = H and CSym(S)(H) = G .

Example

The T/I -group and the PLR-group are dual in the symmetric
group on consonant triads.

Example (Cayley)

All dual groups arise as the left and right multiplication of a group
on itself.



Constructing Sub Dual Groups

Theorem (Fiore–Noll, 2011)

Given a pair of dual groups, G and H acting on S, we may easily
construct a subdual pair, G0 and H0 acting on S0, as follows.

1 Pick G0 ≤ G and s0 ∈ S.

2 Let S0 := G0s0 and H0 := {h ∈ H | hs0 ∈ S0}.
3 Then G0 and H0 are dual groups acting on S0.

4 If k ∈ H, and we transform S0 to kS0, then H0 transforms to
kH0k−1.



Example: {C , c}

Example

G = PLR-group
H = T/I -group
S = consonant triads.

1 Pick G0 = {Id,P} and s0 = C .

2 Then S0 = G0s0 = {C , c}
H0 consists of solutions to TiC = C and IjC = c,
H0 = {Id, I7}.

3 Then {Id,P} and {Id, I7} are dual groups on {C , c}.
4 For any T`, {Id,P} and {Id,T`I7T−`} are dual groups on
{T`C ,T`c}.



Example: Hexatonic (Cohn 1996) and (Clampitt 1998)

Example

G = PLR-group, H = T/I -group, S = consonant triads.

1 Pick G0 = 〈P, L〉 and s0 = E [.

2 Then S0 = G0s0 = {E [, e[,B, b,G , g}
H0 = {Id,T4,T8, I1, I5, I9} consists of solutions to

TiE [ = E [ I`E [ = e[

TjE [ = G ImE [ = g

TkE [ = B InE [ = b.

3 Then 〈P, L〉 and {Id,T4,T8, I1, I5, I9} are dual groups on
{E [, e[,B, b,G , g}.

4 The transforms are the hyperhexatonic.

Underlying set is {2, 3, 6, 7, 10, 11}.



Example: Octatonic

Example

G = PLR-group, H = T/I -group, S = consonant triads.

1 Pick G0 = 〈R,P〉 and s0 = G [.

2 Then S0 = G0s0 = {G [, e[,E [, c ,C , a,A, f ]} (measures 88 -
92 of Schoenberg!)
H0 = {Id,T3,T6,T9, I1, I4, I7, I10} by solving equations

3 Then 〈R,P〉 and H0 are dual groups on
{G [, e[,E [, c ,C , a,A, f ]}.

4 The transforms are the hyperoctatonic.

Underlying set is octatonic {0, 1, 3, 4, 6, 7, 9, 10}.



Other Octatonic Covers

Proposition

Any 3-element subset X of the octatonic

{0, 1, 3, 4, 6, 7, 9, 10} ⊂ Z12

generates a simply transitive cover with respect to the set-wise
stabilizer {T0,T3,T6,T9, I1, I4, I7, I10}.

{0, 4, 7} × 1 = {0, 4, 7} = major type
{0, 4, 7} × 2 = {0, 8, 2} = strain type
{0, 4, 7} × 5 = {0, 8, 11} = shark type
{0, 4, 7} × 7 = {0, 4, 1} = jet type
{0, 4, 7} × 10 = {0, 4, 10} = stride type
{0, 4, 7} × 11 = {0, 8, 5} = minor type.



Simply Transitive Groups for Other Octatonic Covers

Only multiples of major chord that have 3 notes:

{0, 4, 7} × 1 = {0, 4, 7} = major type
{0, 4, 7} × 2 = {0, 8, 2} = strain type
{0, 4, 7} × 5 = {0, 8, 11} = shark type
{0, 4, 7} × 7 = {0, 4, 1} = jet type
{0, 4, 7} × 10 = {0, 4, 10} = stride type
{0, 4, 7} × 11 = {0, 8, 5} = minor type.

All of these types occur in Schoenberg, String Quartet 1, Opus 7.

Fiore–Satyendra 2005 ⇒ Each multiple has a neo-Riemannian type
group associated to it.

Fiore–Noll 2011 ⇒ Each multiple generates a simply transitive
octatonic cover (take dual to set wise octatonic T/I stabilizer).



Morphisms of Simply Transitive Group Actions



Morphisms of Group Actions

Definition (Morphism of Group Actions)

Suppose (G1,S1) and (G2, S2) are group actions. A morphism of
group actions

(f , ϕ) : (G1, S1) // (G2,S2)

consists of a function f : S1 → S2 and a group homomorphism
ϕ : G1 → G2 such that

S1
f //

g

��

S2

ϕ(g)
��

S1
f // S2

commutes for all g ∈ G1.



Affine Maps are Morphisms for Groups Generated by P , L,
and R-Analogues

Definition (Affine Map)

A function f : Z12 → Z12 is called affine if there exist m and b
such that f (x) = mx + b for all x ∈ Z12.

Proposition

Suppose f : Z12 → Z12 is affine. Then f commutes with P, L, and
R-analogues, that is

Pf = fP Lf = fL Rf = fR.

Example

(2, 1, 5) � R // (1, 5, 4)

(1, 6, 10) � R //
_

77

OO

(6, 1, 3)
_

77

OO



Return to Musical Analysis



The Affine Morphism 77 Indicates a Parallel Organization
Between the RP Major/Minor Cycle and the Jet-Shark
Piece-wide Narrative.
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Total Network



Total Network

7et87e215 154 548 487 et2

04937016t 6t3 t37 704 491

592380 805 059 926

137 379

40t 046

916704 049 491 16t

piece-wide, 
trichordal cycle

triadic melody,
mm. 88-92

cello melody, 
mm. 8-10

triadic melody,
m. 90

inner voices,
m. 90

inner voices,
m. 91

Schoenberg, String Quartet No. 1, op. 7
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