What is Mathematical Music Theory?

An Introduction via Perspectives on Consonant Triads

Thomas M. Fiore
http://www-personal.umd.umich.edu/~tmfiore/

What is Mathematical Music Theory?

Mathematical music theory uses modern mathematical structures to
(1) analyze works of music (describe and explain them),
(2) study, characterize, and reconstruct musical objects such as the consonant triad, the diatonic scale, the lonian mode, the consonance/dissonance dichotomy...
(3) compose
(ㄷ) …

What is Mathematical Music Theory?

Mathematical music theory uses modern mathematical structures to
(1) analyze works of music (describe and explain them),
(2) study, characterize, and reconstruct musical objects such as the consonant triad, the diatonic scale, the lonian mode, the consonance/dissonance dichotomy...
(3) compose
(ㄷ) …

Levels of Musical Reality, Hugo Riemann

There is a distinction between three levels of musical reality.

- Physical level: a tone is a pressure wave moving through a medium, "Ton"
- Psychological level: a tone is our experience of sound, "Tonempfindung"
- Intellectual level: a tone is a position in a tonal system, described in a syntactical meta-language, "Tonvorstellung". Mathematical music theory belongs to this realm.

Work of Mazzola and Collaborators

- Mazzola, Guerino. Gruppen und Kategorien in der Musik. Entwurf einer mathematischen Musiktheorie. Research and Exposition in Mathematics, 10. Heldermann Verlag, Berlin, 1985.
- Mazzola, Guerino. The topos of music. Geometric logic of concepts, theory, and performance. In collaboration with Stefan Göller and Stefan Müller. Birkhäuser Verlag, Basel, 2002.
- Noll, Thomas, Morphologische Grundlagen der abendländischen Harmonik in: Moisei Boroda (ed.), Musikometrika 7, Bochum: Brockmeyer, 1997.
These developed a mathematical meta-language for music theory, investigated concrete music-theoretical questions, analyzed works of music, and did compositional experiments (Noll 2005).

Lewin

- Lewin, David. Generalized Musical Intervals and Transformations, Yale University Press, 1987.
- Lewin, David. Musical Form and Transformation: 4 Analytic Essays, Yale University Press, 1993.

Lewin introduced generalized interval systems to analyze works of music. The operations of Hugo Riemann were a point of departure. Mathematically, a generalized interval system is a simply transitive group action.

Introduction and Basics
The Consonant Triad
Geometry of Triads
Extension of Neo-Riemannian Theory
Symmetries of Triads

II. Basics

The \mathbb{Z}_{12} Model of Pitch Class

We have a bijection between the set of pitch classes and \mathbb{Z}_{12}.

Figure: The musical clock.

Transposition and Inversion

We have the musical operations transposition (rotation)

$$
\begin{aligned}
& T_{n}: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{12} \\
& T_{n}(x):=x+n
\end{aligned}
$$

and inversion (reflection)

$$
\begin{gathered}
I_{n}: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{12} \\
I_{n}(x):=-x+n
\end{gathered}
$$

These generate the dihedral group of order 24 (symmetries of 12-gon).

III. Characterization of the Consonant Triad

Major and Minor Triads

Major and minor triads are very
common in
Western music.
(Audio)

$$
\begin{aligned}
C \text {-major } & =\langle C, E, G\rangle \\
& =\langle 0,4,7\rangle \\
C \text {-minor } & =\langle G, E b, C\rangle \\
& =\langle 7,3,0\rangle
\end{aligned}
$$

The set S of consonant triads	
Major Triads	Minor Triads
$C=\langle 0,4,7\rangle$	$\langle 0,8,5\rangle=f$
$C \sharp=D b=\langle 1,5,8\rangle$	$\langle 1,9,6\rangle=f \sharp=g b$
$D=\langle 2,6,9\rangle$	$\langle 2,10,7\rangle=g$
$D \sharp=E b=\langle 3,7,10\rangle$	$\langle 3,11,8\rangle=g \sharp=a b$
$E=\langle 4,8,11\rangle$	$\langle 4,0,9\rangle=a$
$F=\langle 5,9,0\rangle$	$\langle 5,1,10\rangle=a \sharp=b b$
$F \sharp=G b=\langle 6,10,1\rangle$	$\langle 6,2,11\rangle=b$
$G=\langle 7,11,2\rangle$	$\langle 7,3,0\rangle=c$
$G \sharp=A b=\langle 8,0,3\rangle$	$\langle 8,4,1\rangle=c \sharp=d b$
$A=\langle 9,1,4\rangle$	$\langle 9,5,2\rangle=d$
$A \sharp=B b=\langle 10,2,5\rangle$	$\langle 10,6,3\rangle=d \sharp=e b$
$B=\langle 11,3,6\rangle$	$\langle 11,7,4\rangle=e$

Major and Minor Triads

The T / I-group acts on the set S of major and minor triads.

$$
\begin{aligned}
T_{1}\langle 0,4,7\rangle & =\left\langle T_{1} 0, T_{1} 4, T_{1} 7\right\rangle \\
& =\langle 1,5,8\rangle \\
& \\
I_{0}\langle 0,4,7\rangle & =\left\langle I_{0} 0, I_{0} 4, I_{0} 7\right\rangle \\
& =\langle 0,8,5\rangle
\end{aligned}
$$

Figure: I_{0} applied to a C-major triad yields an f-minor triad.

Neo-Riemannian Music Theory

- Recent work focuses on the neo-Riemannian operations P, L, and R.
- P, L, and R generate a dihedral group, called the neo-Riemannian group. As we'll see, this group is dual to the T / I group in the sense of Lewin.
- These transformations arose in the work of the 19th century music theorist Hugo Riemann, and have a pictorial description on the Oettingen/Riemann Tonnetz.
- P, L, and R are defined in terms of common tone preservation.

The neo-Riemannian Transformation P

We consider three functions

$$
P, L, R: S \rightarrow S
$$

Let $P(x)$ be that triad of opposite type as x with the first and third notes switched.
For example

$$
\begin{aligned}
P\langle\mathbf{0}, 4, \mathbf{7}\rangle & = \\
P(C \text {-major }) & =
\end{aligned}
$$

The set S of consonant triads	
Major Triads	Minor Triads
$C=\langle 0,4,7\rangle$	$\langle 0,8,5\rangle=f$
$C \sharp=D b=\langle 1,5,8\rangle$	$\langle 1,9,6\rangle=f \sharp=g b$
$D=\langle 2,6,9\rangle$	$\langle 2,10,7\rangle=g$
$D \sharp=E b=\langle 3,7,10\rangle$	$\langle 3,11,8\rangle=g \sharp=a b$
$E=\langle 4,8,11\rangle$	$\langle 4,0,9\rangle=a$
$F=\langle 5,9,0\rangle$	$\langle 5,1,10\rangle=a \sharp=b b$
$F \sharp=G b=\langle 6,10,1\rangle$	$\langle 6,2,11\rangle=b$
$G=\langle 7,11,2\rangle$	$\langle 7,3,0\rangle=c$
$G \sharp=A b=\langle 8,0,3\rangle$	$\langle 8,4,1\rangle=c \sharp=d b$
$A=\langle 9,1,4\rangle$	$\langle 9,5,2\rangle=d$
$A \sharp=B b=\langle 10,2,5\rangle$	$\langle 10,6,3\rangle=d \sharp=e b$
$B=\langle 11,3,6\rangle$	$\langle 11,7,4\rangle=e$

The neo-Riemannian Transformation P

We consider three functions

$$
P, L, R: S \rightarrow S
$$

Let $P(x)$ be that triad of opposite type as x with the first and third notes switched.
For example

$$
P\langle\mathbf{0}, 4, \mathbf{7}\rangle=\langle\mathbf{7}, 3, \mathbf{0}\rangle
$$

$P(C$-major $)=c$-minor

The set S of consonant triads	
Major Triads	Minor Triads
$C=\langle 0,4,7\rangle$	$\langle 0,8,5\rangle=f$
$C \sharp=D b=\langle 1,5,8\rangle$	$\langle 1,9,6\rangle=f \sharp=g b$
$D=\langle 2,6,9\rangle$	$\langle 2,10,7\rangle=g$
$D \sharp=E b=\langle 3,7,10\rangle$	$\langle 3,11,8\rangle=g \sharp=a b$
$E=\langle 4,8,11\rangle$	$\langle 4,0,9\rangle=a$
$F=\langle 5,9,0\rangle$	$\langle 5,1,10\rangle=a \sharp=b b$
$F \sharp=G b=\langle 6,10,1\rangle$	$\langle 6,2,11\rangle=b$
$G=\langle 7,11,2\rangle$	$\langle 7,3,0\rangle=c$
$G \sharp=A b=\langle 8,0,3\rangle$	$\langle 8,4,1\rangle=c \sharp=d b$
$A=\langle 9,1,4\rangle$	$\langle 9,5,2\rangle=d$
$A \sharp=B b=\langle 10,2,5\rangle$	$\langle 10,6,3\rangle=d \sharp=e b$
$B=\langle 11,3,6\rangle$	$\langle 11,7,4\rangle=e$

The neo-Riemannian Transformations L and R

- Let $L(x)$ be that triad of opposite type as x with the second and third notes switched. For example

$$
\begin{aligned}
& L\langle 0, \mathbf{4}, \mathbf{7}\rangle=\langle 11, \mathbf{7}, \mathbf{4}\rangle \\
& L(C \text {-major })=\text { e-minor. }
\end{aligned}
$$

- Let $R(x)$ be that triad of opposite type as x with the first and second notes switched. For example

$$
\begin{gathered}
R\langle\mathbf{0}, \mathbf{4}, 7\rangle=\langle\mathbf{4}, \mathbf{0}, 9\rangle \\
R(C \text {-major })=\text { a-minor. }
\end{gathered}
$$

Minimal motion of the moving voice under P, L, and R.

$P C=c$

$L C=e$

$R C=a$

Uniqueness of the Consonant Triad

Theorem (Richard Cohn, 1997)

The consonant triad is uniquely characterized by parsimonious voice leading. Namely, suppose $\langle 0, x, y\rangle$ is a 3-note chord in \mathbb{Z}_{12}, and we generate its orbit under the dihedral group. Then the P, L, R operations associated to the orbit of $\langle 0, x, y\rangle$ admit parsimonious voice leading if and only if $\langle 0, x, y\rangle$ is a consonant triad.

Remarkable: this result is completely independent of the acoustic properties of the consonant triad!

Example: The Elvis Progression

The Elvis Progression I-VI-IV-V-I from 50's Rock is:

Example: "Oh! Darling" from the Beatles

$E+\quad A \quad E$
Oh___ Darling please believe me
$f \sharp \quad D$
I'll never do you no harm b7 E7
Be-lieve me when I tell you b7 E7 A
I'll never do you no harm

The neo-Riemannian PLR-Group and Duality

Definition

The neo-Riemannian PLR-group is the subgroup of permutations of S generated by P, L, and R.

Theorem (Lewin 80's, Hook 2002, ...)

The PLR group is dihedral of order 24 and is generated by L and R.

Theorem (Lewin 80's, Hook 2002, ...)

The PLR group is dual to the T / I group in the sense that each is the centralizer of the other in the symmetric group on the set S of major and minor triads. Moreover, both groups act simply transitively on S.
IV. Geometry of Consonant Triads

The Tonnetz Graph and its Dual are Tori

Figure: The Tonnetz.

Figure: Douthett and Steinbach's Graph.

See Crans-Fiore-Satyendra, Musical Actions of Dihedral Groups, American Mathematical Monthly, 2009.

The Dual Graph to the Tonnetz on a Torus

Figure: Douthett and Steinbach's Graph.

Figure: Waller's Torus.

Beethoven's 9th, 2nd Mvmt, Measures 143-175 (Cohn)

Thus far we have seen:

- How to encode pitch classes as integers modulo 12, and consonant triads as 3 -tuples of integers modulo 12
- How the T / l-group acts componentwise on consonant triads
- How the $P L R$-group acts on consonant triads
- Duality between the T / I-group and the $P L R$-group
- Geometric depictions on the torus and musical examples.

But most music does not consist entirely of triads!
A mathematical perspective helps here.

V. Extension of Neo-Riemannian Theory

Extension of Neo-Riemannian Theory

Theorem (Fiore-Satyendra, 2005)

Let $x_{1}, \ldots, x_{n} \in \mathbb{Z}_{m}$ and suppose that there exist x_{q}, x_{r} in the list such that $2\left(x_{q}-x_{r}\right) \neq 0$. Let S be the family of $2 m$ pitch-class segments that are obtained by transposing and inverting the pitch-class segment $X=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Then the $2 m$ transpositions and inversions act simply transitively on S.

Extension of Neo-Riemannian Theory: Duality

Theorem (Fiore-Satyendra, 2005)

Fix $1 \leq k, \ell \leq n$. Define

$$
K(Y):=I_{y_{k}+y_{\ell}}(Y)
$$

$$
Q_{i}(Y):=\left\{\begin{array}{l}
T_{i} Y \text { if } Y \text { is a transposed form of } X \\
T_{-i} Y \text { if } Y \text { is an inverted form of } X
\end{array}\right.
$$

Then K and Q_{1} generate the centralizer of the T / I group of order 2 m . This centralizer is called the generalized contextual group. It is dihedral of order $2 m$, and its centralizer is the mod m T/I-group. Moreover, the generalized contextual group acts simply transitively on S.

Subject of Hindemith, Ludus Tonalis, Fugue in E

Let's see what this theorem can do for us in an analysis of Hindemith's Fugue in E from Ludus Tonalis.

Subject:

The Musical Space S in the Fugue in E

Consider the four-note motive

$$
\begin{aligned}
P_{0} & =\langle D, B, E, A\rangle \\
& =\langle 2,11,4,9\rangle .
\end{aligned}
$$

Transposed Forms

P_{0}	$\langle 2,11,4,9\rangle$
P_{1}	$\langle 3,0,5,10\rangle$
P_{2}	$\langle 4,1,6,11\rangle$
P_{3}	$\langle 5,2,7,0\rangle$
P_{4}	$\langle 6,3,8,1\rangle$
P_{5}	$\langle 7,4,9,2\rangle$
P_{6}	$\langle 8,5,10,3\rangle$
P_{7}	$\langle 9,6,11,4\rangle$
P_{8}	$\langle 10,7,0,5\rangle$
P_{9}	$\langle 11,8,1,6\rangle$
P_{10}	$\langle 0,9,2,7\rangle$
P_{11}	$\langle 1,10,3,8\rangle$

Inverted Forms

p_{0}	$\langle 10,1,8,3\rangle$
p_{1}	$\langle 11,2,9,4\rangle$
p_{2}	$\langle 0,3,10,5\rangle$
p_{3}	$\langle 1,4,11,6\rangle$
p_{4}	$\langle 2,5,0,7\rangle$
p_{5}	$\langle 3,6,1,8\rangle$
p_{6}	$\langle 4,7,2,9\rangle$
p_{7}	$\langle 5,8,3,10\rangle$
p_{8}	$\langle 6,9,4,11\rangle$
p_{9}	$\langle 7,10,5,0\rangle$
p_{10}	$\langle 8,11,6,1\rangle$
p_{11}	$\langle 9,0,7,2\rangle$

Q-2 Applied to Motive in Subject and I_{11}-Inversion

Q-2 Applied to Motive in Subject and I_{11}-Inversion

Product Network Encoding Subject and I_{11}-Inversion

Our Theorem about duality guarantees this diagram commutes!

Self-Similarity: Local Picture

Self-Similarity: Global Picture and Local Picture

Audio: Hindemith, Ludus Tonalis, Fugue in E
VI. The Topos of Triads and the PLR-Group (Fiore-Noll 2011)

