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Introduction

The most basic invariant of a finite CW -complex is the Euler
characteristic.

χ : finite CW -complexes //R

Remarkable connections to geometry:

χ(compact connected orientable surface) = 2− 2 · genus,

Theorem of Gauss-Bonnet

χ(M) =
1

2π

∫
M

curvature dA

for M any compact 2-dimensional Riemannian manifold.
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Introduction

Problem: meaningfully define χ purely in terms of the
combinatorial models

finite skeletal categories
without loops

?

''

|−|
��

finite CW -complexes χ
// R
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Introduction

More generally:

categories

?

��

finite skeletal categories
without loops

χ(|−|)
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|−|

��

?�
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finite CW -complexes χ
// R
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Trivial Example Presents Challenges

Γ = Ẑ2, that is, Γ has one object ∗ and morΓ(∗, ∗) = Z2.

|Ẑ2| = geometric realization of nerve of Ẑ2

0-cells of |Ẑ2| = ob(Ẑ2) = {∗}
1-cells of |Ẑ2| = non-identity maps = {∗ → ∗}
2-cells of |Ẑ2| = paths of 2 non-id maps = {∗ → ∗ → ∗}

etc. = etc.

χ(|Ẑ2|) =
∑
n≥0

(−1)ncard(n-cells of |Ẑ2|)

=
∑
n≥0

(−1)n
Leinster−Berger

=====
1

1− (−1)
=

1

2
.



Introduction
Finiteness Obstructions and Euler Characteristics for Categories

Classifying I-Spaces
Homotopy Colimit Formula and the Inclusion-Exclusion Principle

Comparison with Leinster’s Notions
Applications and Summary

Desiderata for Invariants

Desiderata for χ, χ(2) : categories→ R
1. Geometric relevance
2. Compatibility with

equivalence of categories
coverings of groupoids: if p : E → B, then
χ(2)(E) = n · χ(2)(B)
isofibrations: if f : E → B, then
χ(2)(E) = χ(2)(f −1(b0)) · χ(2)(B)
finite products
finite coproducts
“pushouts” (Inclusion-Exclusion Principle)
χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B)
homotopy colimits.

Our work achieves this.
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Pushouts in Cat and χ

{0, 1} //

��

pushout

{0→ 1}

��

{∗} // N̂

χ(|N̂|) =χ(S1) = 0 = 1 + 1− 2 "

{0, 1} //

��

pushout

{∗′}

��

{∗} // {∗}

χ({∗}) =1 6= 1 + 1− 2 %

Colimits are not homotopy invariant, cannot expect compatibility
of χ with pushouts.
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Homotopy Pushouts in Cat and χ

{0, 1} //

��

{0→ 1}

{∗}

Homotopy p.o. is

• // •

•

??~~~~

��
@@

@@
•

??~~~~

��
•

{0, 1} //

��

{∗′}

{∗}

Homotopy p.o. is

•

•

??~~~~

��
@@

@@
•

__@@@@

��~~
~~

•

In both cases, χ = 0 = 1 + 1− 2. "
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Main Theorem of this Talk

Theorem (Fiore-Lück-Sauer)

Let C : I → Cat be a pseudo functor such that

I is directly finite: ab = id⇒ ba = id;

I admits a finite I-CW -model, Λn := the finite set of n-cells
λ = mor(?, iλ)× Dn;

each C(i) is of type (FPR).

Then: χ(hocolimI C; R) =
∑
n≥0

(−1)n ·
∑
λ∈Λn

χ(C(iλ); R).

Similar formulas hold for the L2-Euler characteristic, the functorial
characteristics, and the finiteness obstruction.
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II. Finiteness Obstructions and Euler
Characteristics for Categories.
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Modules and the Projective Class Group

R= an associative commutative ring with 1
Γ= a small category

An RΓ-module is a functor M : Γop → R-MOD.

K0(RΓ) :=projective class group =

Z{iso classes of finitely generated projective RΓ-modules}

modulo the relation [P0]− [P1] + [P2] = 0 for every exact sequence
0→ P0 → P1 → P2 → 0 of finitely generated projective
RΓ-modules.
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Type (FP) and Finiteness Obstruction

Γ is of type (FPR) if there is a finite projective RΓ-resolution
P∗ → R. In this case, the finiteness obstruction is

o(Γ; R) :=
∑
n≥0

(−1)n · [Pn] ∈ K0(RΓ).

Remark

Suppose G is a finitely presented group of type (FPZ). Then
o(Ĝ ;Z) = oWall(BG ;Z).
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Examples of Type (FP)

Example

Suppose Γ is a finite category in which every endo is an iso, that is,
Γ is an EI-category. If | autΓ(x)| ∈ R× for all x ∈ ob(Γ), then Γ is
of type (FPR).
Thus finite groupoids, finite posets, finite transport groupoids, and
orbit categories of finite groups are all of type (FPQ).
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Splitting Theorem of Lück

Theorem

If Γ is an EI-category, then

K0(RΓ)
S //

⊕
x∈iso(Γ)

K0(R autΓ(x))

is an isomorphism, where Sx(M) is the quotient of the R-module
M(x) by the R-submodule generated by all images of M(u) for all
non-invertible morphisms u : x → y in Γ.
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Euler Characteristic

Definition

Suppose that Γ is of type (FPR) and P∗ → R is a finite projective
RΓ-resolution. The Euler characteristic of Γ with coefficients in R
is

χ(Γ; R) :=
∑

x∈iso(Γ)

∑
n≥0

(−1)n rkR
(
SxPn ⊗R autΓ(x) R

)
.

Example

G finite groupoid ⇒ χ(G;Q) = | iso(G)|.
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L2-Euler Characteristic

Definition

Suppose that Γ is of type (L2) and P∗ → C is a (not necessarily
finite) projective CΓ-resolution. The L2-Euler characteristic of Γ is

χ(2)(Γ) :=
∑

x∈iso(Γ)

∑
n≥0

(−1)n dimN (x) Hn(SxP∗ ⊗C autΓ(x) N (x))

where N (x) = B
(
l2
(
autΓ(x)

))autΓ(x)
is the group von Neumann

algebra of autΓ(x).
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Example of L2-Euler Characteristic

Example

Let G be a groupoid such that | autG(x)| <∞ and∑
x∈iso(G)

1
| autG(x)| <∞.

Then χ(2)(G) =
∑

x∈iso(G)

1
| autG(x)| . (Same as Baez-Dolan, and

Leinster-Berger in finite case.)
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Comparison with Topology

Theorem

If Γ is a directly finite category of type (FFC), then

χ(Γ;C) = χ(2)(Γ) = χ(BΓ;C).

Example

If Γ is a finite skeletal category without loops, then it is of type
(FFC), and all three invariants are equal to∑

n≥0

(−1)ncn(Γ)

where cn is the number of nondegenerate paths
i0 → i1 → i2 → · · · → in of n-many morphisms in Γ.
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III. Classifying I-Spaces.
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I-Spaces

I = a small category

An I-space is a functor X : Iop → SPACES.

Example

1 morI(−, i)

2 morI(−, i)× Sn−1

3 morI(−, i)× Dn

4 Pushouts of these
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I-CW -complexes

An I-CW -complex X is an I-space X together with a filtration
∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xn ⊂ . . . ⊂ X =

⋃
n≥0 Xn such

that X = colimn→∞ Xn and for any n ≥ 0 the n-skeleton Xn is
obtained from the (n − 1)-skeleton Xn−1 by attaching I-n-cells,
i.e., there exists a pushout of I-spaces of the form∐

λ∈Λn
morI(−, iλ)× Sn−1 −−−−→ Xn−1y y∐

λ∈Λn
morI(−, iλ)× Dn −−−−→ Xn

where the vertical maps are inclusions, Λn is an index set, and the
iλ’s are objects of I. In particular, X0 =

∐
λ∈Λ0

morI(−, iλ).
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Classifying I-Spaces

Definition

A finite model for the I-classifying space is a finite I-CW -complex
X such that X (i) is contractible for each object i of I.

Example

I = {k ← j → `} admits a finite model
X0 := morI(?, k)

∐
morI(?, `)

morI(−, j)× S0 //

��

X0

��

morI(−, j)× D1 // X1

Then X (k) = ∗, X (`) = ∗, X (j) = D1 ' ∗.
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IV. Homotopy Colimit Formula and the
Inclusion-Exclusion Principle.
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Homotopy Colimits in Cat

Thomason: In Cat, a homotopy colimit of C : I → Cat is given by
the Grothendieck construction.

The category hocolimI C has objects pairs (i , c), where i ∈ ob(I)
and c ∈ ob

(
C(i)

)
.

A morphism from (i , c) to (j , d) is a pair (u, f ), where u : i → j is
a morphism in I and f : C(u)(c)→ d is a morphism in C(j).

Example

1 C : Ĝ → Cat has homotopy colimit = homotopy orbit of
G -action on C(∗).

2 If C(∗) is a set, then this gives the transport groupoid of the
left G -action.
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Homotopy Colimit Formula and Incl.-Excl. Principle

Theorem (Fiore-Lück-Sauer)

C : I → Cat a pseudo functor, I directly finite with a finite
I-CW -model, Λn= the finite set of I-n-cells λ = mor(?, iλ)× Dn,
each F (i) of type (FPR), then

χ(hocolimI C; R) =
∑
n≥0

(−1)n ·
∑
λ∈Λn

χ(C(iλ); R).

Example

I = {k ← j → `} admits a finite model, Λ0 = {k, `} and Λ1 = {j}
Theorem ⇒
χ(homotopy pushout of C) = χ(C(k)) + χ(C(`))− χ(C(j)).
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V. Comparison with Leinster’s Notions.



Introduction
Finiteness Obstructions and Euler Characteristics for Categories

Classifying I-Spaces
Homotopy Colimit Formula and the Inclusion-Exclusion Principle

Comparison with Leinster’s Notions
Applications and Summary

Comparison with Leinster’s Weightings

Γ=a finite category
A weighting on Γ is a function k• : ob(Γ)→ Q such that for all
objects x ∈ ob(Γ), we have

∑
y∈ob(Γ)

|mor(x , y)| · ky = 1.

Theorem (Fiore-Lück-Sauer)

I a finite category, X a finite model, then the function
k• : ob(I)→ Q defined by

ky :=
∑
n≥0

(−1)n(number of n-cells of X based at y)

is a weighting on I. More generally, finite free RΓ-resolutions of R
produce weightings.
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Comparison with Leinster’s Euler Characteristics

Definition (Leinster)

A finite category Γ has an Euler characteristic in the sense of
Leinster if it admits both a weighting k• and a coweighting k•. In
this case, its Euler characteristic in the sense of Leinster is defined
as

χL(Γ) :=
∑

y∈ob(Γ)

ky =
∑

x∈ob(Γ)

kx .

This agrees with χ(2) when Γ is finite, EI, skeletal, and the left
autΓ(y)-action on morΓ(x , y) is free for every two objects
x , y ∈ ob(Γ). Proof: K -theoretic Möbius inversion.
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VI. Applications and Summary.
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Applications

1 Let G be a group which admits a finite G -CW -model Y for
the classifying space for proper G -actions. The equivariant
Euler characteristic of Y is the functorial (L2) Euler
characteristic of the proper orbit category.

2 Developability of Haefliger complexes of groups:

χ(2)(hocolimX/G F ) =
χ(2)(X )

|G |
=
χ(X ;C)

|G |
=
χ(BX ;C)

|G |
.
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Summary

We have introduced notions of finiteness obstruction, Euler
characteristic, and L2-Euler characteristic for wide classes of
categories, including certain infinite ones.
Origins lie in the homological algebra of modules over
categories and modules over group von Neumann algebras.
These notions are compatible with: equivalences of categories,
coverings, fibrations, finite products, finite coproducts,
homotopy colimits.
In the case of groups, the L2-Euler characteristic agrees with
the classical L2-Euler characteristic of groups.
The notions are geometric: agree with χ(BΓ) or equivariant
Euler characteristic in certain cases.
The notions are combinatorial: have K -theoretic Möbius
inversion.
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