Euler Characteristics of Categories and Homotopy Colimits

Thomas M. Fiore joint work with Wolfgang Lück and Roman Sauer

http://www-personal.umd.umich.edu/~tmfiore/

Outline

1 Introduction

- 2 Finiteness Obstructions and Euler Characteristics for Categories
- 3 Classifying \mathcal{I} -Spaces
- 4 Homotopy Colimit Formula and the Inclusion-Exclusion Principle
- 5 Comparison with Leinster's Notions
- 6 Applications and Summary

Finiteness Obstructions and Euler Characteristics for Categories Classifying Z-Spaces Homotopy Colimit Formula and the Inclusion-Exclusion Principle Comparison with Leinster's Notions Applications and Summary

I. Introduction.

Introduction

The most basic invariant of a finite *CW*-complex is the Euler characteristic.

$$\chi$$
: finite *CW*-complexes $\longrightarrow \mathbb{R}$

Remarkable connections to geometry:

- χ (compact connected orientable surface) = 2 2 · genus,
- Theorem of Gauss-Bonnet

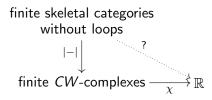
$$\chi(M) = rac{1}{2\pi} \int_M$$
 curvature dA

for M any compact 2-dimensional Riemannian manifold.

Finiteness Obstructions and Euler Characteristics for Categories Classifying \mathcal{I} -Spaces Homotopy Colimit Formula and the Inclusion-Exclusion Principle Comparison with Leinster's Notions Applications and Summary

Introduction

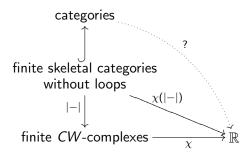
Problem: meaningfully define χ purely in terms of the combinatorial models



Finiteness Obstructions and Euler Characteristics for Categories Classifying Z-Spaces Homotopy Colimit Formula and the Inclusion-Exclusion Principle Comparison with Leinster's Notions Applications and Summary

Introduction

More generally:



Finiteness Obstructions and Euler Characteristics for Categories Classifying \mathcal{I} -Spaces Homotopy Colimit Formula and the Inclusion-Exclusion Principle Comparison with Leinster's Notions Applications and Summary

1

Trivial Example Presents Challenges

$$\begin{split} &\Gamma=\widehat{\mathbb{Z}_2}\text{, that is, }\Gamma\text{ has one object }*\text{ and }mor_{\Gamma}(*,*)=\mathbb{Z}_2\text{.}\\ &|\widehat{\mathbb{Z}_2}|=\text{geometric realization of nerve of }\widehat{\mathbb{Z}_2} \end{split}$$

$$\begin{array}{rcl} & 0\mbox{-cells of } |\widehat{\mathbb{Z}_2}| & = & \mbox{ob}(\widehat{\mathbb{Z}_2}) = \{*\} \\ & 1\mbox{-cells of } |\widehat{\mathbb{Z}_2}| & = & \mbox{non-identity maps} = \{* \to *\} \\ & 2\mbox{-cells of } |\widehat{\mathbb{Z}_2}| & = & \mbox{paths of } 2 \mbox{ non-id maps} = \{* \to * \to *\} \\ & \mbox{etc.} & = & \mbox{etc.} \\ & & \chi(|\widehat{\mathbb{Z}_2}|) & = & \sum_{n \ge 0} (-1)^n \mbox{card}(n\mbox{-cells of } |\widehat{\mathbb{Z}_2}|) \\ & = & \sum_{n \ge 0} (-1)^n \frac{\mbox{Leinster-Berger}}{====} \frac{1}{1-(-1)} = \frac{1}{2}. \end{array}$$

Finiteness Obstructions and Euler Characteristics for Categories Classifying Z-Spaces Homotopy Colimit Formula and the Inclusion-Exclusion Principle Comparison with Leinster's Notions Applications and Summary

Desiderata for Invariants

Desiderata for $\chi, \chi^{(2)}$: categories $\rightarrow \mathbb{R}$

- 1. Geometric relevance
- 2. Compatibility with
 - equivalence of categories
 - coverings of groupoids: if $p: \mathcal{E} \to \mathcal{B}$, then $\chi^{(2)}(\mathcal{E}) = n \cdot \chi^{(2)}(\mathcal{B})$
 - isofibrations: if $f: \mathcal{E} \to \mathcal{B}$, then $\chi^{(2)}(\mathcal{E}) = \chi^{(2)}(f^{-1}(b_0)) \cdot \chi^{(2)}(\mathcal{B})$
 - finite products
 - finite coproducts
 - "pushouts" (Inclusion-Exclusion Principle)

$$\chi(A\cup B) = \chi(A) + \chi(B) - \chi(A\cap B)$$

• homotopy colimits.

Our work achieves this.

Finiteness Obstructions and Euler Characteristics for Categories Classifying Z-Spaces Homotopy Colimit Formula and the Inclusion-Exclusion Principle Comparison with Leinster's Notions Applications and Summary

Desiderata for Invariants

Desiderata for $\chi, \chi^{(2)}$: categories $\rightarrow \mathbb{R}$

- 1. Geometric relevance
- 2. Compatibility with
 - equivalence of categories
 - coverings of groupoids: if $p: \mathcal{E} \to \mathcal{B}$, then $\chi^{(2)}(\mathcal{E}) = n \cdot \chi^{(2)}(\mathcal{B})$
 - isofibrations: if $f: \mathcal{E} \to \mathcal{B}$, then $\chi^{(2)}(\mathcal{E}) = \chi^{(2)}(f^{-1}(b_0)) \cdot \chi^{(2)}(\mathcal{B})$
 - finite products
 - finite coproducts
 - "pushouts" (Inclusion-Exclusion Principle) $\chi(A \cup B) = \chi(A) + \chi(B) - \chi(A \cap B)$
 - homotopy colimits.

Our work achieves this.

Finiteness Obstructions and Euler Characteristics for Categories Classifying Z-Spaces Homotopy Colimit Formula and the Inclusion-Exclusion Principle Comparison with Leinster's Notions Applications and Summary

Pushouts in **Cat** and χ

$$\{0,1\} \longrightarrow \{0 \rightarrow 1\}$$

$$\downarrow \qquad \text{pushout} \qquad \downarrow \qquad \chi(|\widehat{\mathbb{N}}|) = \chi(S^1) = 0 = 1 + 1 - 2 \checkmark$$

$$\{*\} \longrightarrow \widehat{\mathbb{N}}$$

$$\{0,1\} \longrightarrow \{*'\}$$

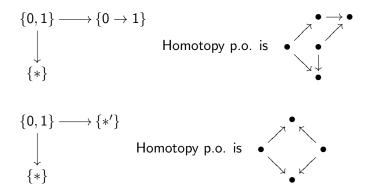
$$\downarrow \qquad \text{pushout} \qquad \downarrow \qquad \chi(\{*\}) = 1 \neq 1 + 1 - 2 \checkmark$$

$$\{*\} \longrightarrow \{*\}$$

Colimits are not homotopy invariant, cannot expect compatibility of χ with pushouts.

Finiteness Obstructions and Euler Characteristics for Categories Classifying Z-Spaces Homotopy Colimit Formula and the Inclusion-Exclusion Principle Comparison with Leinster's Notions Applications and Summary

Homotopy Pushouts in **Cat** and χ



In both cases, $\chi = 0 = 1 + 1 - 2$.

Finiteness Obstructions and Euler Characteristics for Categories Classifying \mathcal{I} -Spaces Homotopy Colimit Formula and the Inclusion-Exclusion Principle Comparison with Leinster's Notions Applications and Summary

Main Theorem of this Talk

Theorem (Fiore-Lück-Sauer)

Let $\mathcal{C}\colon \mathcal{I}\to \textbf{Cat}$ be a pseudo functor such that

- \mathcal{I} is directly finite: $ab = id \Rightarrow ba = id$;
- \mathcal{I} admits a finite \mathcal{I} -CW-model, $\Lambda_n :=$ the finite set of n-cells $\lambda = mor(?, i_{\lambda}) \times D^n$;
- each C(i) is of type (FP_R) .

Then:
$$\chi(\operatorname{hocolim}_{\mathcal{I}} \mathcal{C}; R) = \sum_{n \ge 0} (-1)^n \cdot \sum_{\lambda \in \Lambda_n} \chi(\mathcal{C}(i_{\lambda}); R).$$

Similar formulas hold for the L^2 -Euler characteristic, the functorial characteristics, and the finiteness obstruction.

II. Finiteness Obstructions and Euler Characteristics for Categories.

Modules and the Projective Class Group

R= an associative commutative ring with 1 Γ = a small category

An $R\Gamma$ -module is a functor $M: \Gamma^{op} \to R$ -MOD.

 $K_0(R\Gamma) :=$ projective class group =

 \mathbb{Z} {iso classes of finitely generated projective *R* Γ -modules}

modulo the relation $[P_0] - [P_1] + [P_2] = 0$ for every exact sequence $0 \rightarrow P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow 0$ of finitely generated projective $R\Gamma$ -modules.

Type (FP) and Finiteness Obstruction

 Γ is of type (FP_R) if there is a finite projective $R\Gamma$ -resolution $P_* \rightarrow \underline{R}$. In this case, the finiteness obstruction is

$$o(\Gamma; R) := \sum_{n \ge 0} (-1)^n \cdot [P_n] \in \mathcal{K}_0(R\Gamma).$$

Remark

Suppose G is a finitely presented group of type (FP_Z). Then $o(\widehat{G}; \mathbb{Z}) = o^{Wall}(BG; \mathbb{Z}).$

Examples of Type (FP)

Example

Suppose Γ is a finite category in which every endo is an iso, that is, Γ is an El-category. If $|\operatorname{aut}_{\Gamma}(x)| \in \mathbb{R}^{\times}$ for all $x \in \operatorname{ob}(\Gamma)$, then Γ is of type (FP_R). Thus finite groupoids, finite posets, finite transport groupoids, and orbit categories of finite groups are all of type (FP_Q).

Splitting Theorem of Lück

Theorem

If Γ is an El-category, then

$$\mathcal{K}_0(R\Gamma) \xrightarrow{S} \bigoplus_{\overline{x} \in iso(\Gamma)} \mathcal{K}_0(R \operatorname{aut}_{\Gamma}(x))$$

is an isomorphism, where $S_x(M)$ is the quotient of the R-module M(x) by the R-submodule generated by all images of M(u) for all non-invertible morphisms $u: x \to y$ in Γ .

Euler Characteristic

Definition

Suppose that Γ is of type (FP_R) and P_{*} $\rightarrow \underline{R}$ is a finite projective $R\Gamma$ -resolution. The Euler characteristic of Γ with coefficients in R is

$$\chi(\Gamma; R) := \sum_{\overline{x} \in \mathsf{iso}(\Gamma)} \sum_{n \geq 0} (-1)^n \operatorname{rk}_R \left(S_x P_n \otimes_{R \operatorname{aut}_{\Gamma}(x)} R \right).$$

Example

$$\mathcal{G}$$
 finite groupoid $\Rightarrow \chi(\mathcal{G}; \mathbb{Q}) = |\operatorname{iso}(\mathcal{G})|.$

L²-Euler Characteristic

Definition

Suppose that Γ is of type (L^2) and $P_* \to \mathbb{C}$ is a (not necessarily finite) projective $\mathbb{C}\Gamma$ -resolution. The L^2 -Euler characteristic of Γ is

$$\chi^{(2)}(\Gamma) := \sum_{\overline{x} \in \mathsf{iso}(\Gamma)} \sum_{n \ge 0} (-1)^n \dim_{\mathcal{N}(x)} H_n(S_x P_* \otimes_{\mathbb{C} \mathsf{aut}_{\Gamma}(x)} \mathcal{N}(x))$$

where $\mathcal{N}(x) = \mathcal{B}(l^2(\operatorname{aut}_{\Gamma}(x)))^{\operatorname{aut}_{\Gamma}(x)}$ is the group von Neumann algebra of $\operatorname{aut}_{\Gamma}(x)$.

Example of L^2 -Euler Characteristic

Example

Let
$$\mathcal{G}$$
 be a groupoid such that $|\operatorname{aut}_{\mathcal{G}}(x)| < \infty$ and

$$\sum_{\overline{x} \in \operatorname{iso}(\mathcal{G})} \frac{1}{|\operatorname{aut}_{\mathcal{G}}(x)|} < \infty.$$

Then
$$\chi^{(2)}(\mathcal{G}) = \sum_{\overline{x} \in iso(\mathcal{G})} \frac{1}{|\operatorname{aut}_{\mathcal{G}}(x)|}$$
. (Same as Baez-Dolan, and Leinster-Berger in finite case.)

Comparison with Topology

Theorem

If Γ is a directly finite category of type (FF_C), then

$$\chi(\Gamma; \mathbb{C}) = \chi^{(2)}(\Gamma) = \chi(B\Gamma; \mathbb{C}).$$

Example

If Γ is a finite skeletal category without loops, then it is of type $(FF_{\mathbb{C}})$, and all three invariants are equal to

$$\sum_{n\geq 0}(-1)^n c_n(\Gamma)$$

where c_n is the number of nondegenerate paths $i_0 \rightarrow i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_n$ of n-many morphisms in Γ .

III. Classifying \mathcal{I} -Spaces.

$\mathcal{I}\text{-}\mathsf{Spaces}$

 $\mathcal{I}=\mathsf{a}$ small category

An \mathcal{I} -space is a functor $X : \mathcal{I}^{op} \to SPACES$.

Example

- mor $_{\mathcal{I}}(-,i)$
- 2 mor_{\mathcal{I}} $(-,i) \times S^{n-1}$
- $one mor_{\mathcal{I}}(-,i) \times D^n$

\mathcal{I} -CW-complexes

An \mathcal{I} -CW-complex X is an \mathcal{I} -space X together with a filtration $\emptyset = X_{-1} \subset X_0 \subset X_1 \subset X_2 \subset \ldots \subset X_n \subset \ldots \subset X = \bigcup_{n \ge 0} X_n$ such that $X = \operatorname{colim}_{n \to \infty} X_n$ and for any $n \ge 0$ the *n*-skeleton X_n is obtained from the (n-1)-skeleton X_{n-1} by attaching \mathcal{I} -*n*-cells, i.e., there exists a pushout of \mathcal{I} -spaces of the form

$$\begin{array}{cccc} \coprod_{\lambda \in \Lambda_n} \operatorname{mor}_{\mathcal{I}}(-, i_{\lambda}) \times S^{n-1} & \longrightarrow & X_{n-1} \\ & & & \downarrow \\ & & & \downarrow \\ & & & \downarrow \\ \coprod_{\lambda \in \Lambda_n} \operatorname{mor}_{\mathcal{I}}(-, i_{\lambda}) \times D^n & \longrightarrow & X_n \end{array}$$

where the vertical maps are inclusions, Λ_n is an index set, and the i_{λ} 's are objects of \mathcal{I} . In particular, $X_0 = \prod_{\lambda \in \Lambda_0} \operatorname{mor}_{\mathcal{I}}(-, i_{\lambda})$.

Classifying \mathcal{I} -Spaces

Definition

A finite model for the \mathcal{I} -classifying space is a finite \mathcal{I} -CW-complex X such that X(i) is contractible for each object i of \mathcal{I} .

Example

$$\begin{split} \mathcal{I} &= \{k \leftarrow j \rightarrow \ell\} \text{ admits a finite model} \\ X_0 &:= \operatorname{mor}_{\mathcal{I}}(?, k) \coprod \operatorname{mor}_{\mathcal{I}}(?, \ell) \\ \operatorname{mor}_{\mathcal{I}}(-, j) \times S^0 \longrightarrow X_0 \\ & \downarrow \\ \operatorname{mor}_{\mathcal{I}}(-, j) \times D^1 \longrightarrow X_1 \\ Then X(k) &= *, X(\ell) = *, X(j) = D^1 \simeq *. \end{split}$$

IV. Homotopy Colimit Formula and the Inclusion-Exclusion Principle.

Homotopy Colimits in Cat

Thomason: In **Cat**, a homotopy colimit of $C: \mathcal{I} \to Cat$ is given by the Grothendieck construction.

The category $\operatorname{hocolim}_{\mathcal{I}} \mathcal{C}$ has objects pairs (i, c), where $i \in \operatorname{ob}(\mathcal{I})$ and $c \in \operatorname{ob}(\mathcal{C}(i))$. A morphism from (i, c) to (j, d) is a pair (u, f), where $u: i \to j$ is a morphism in \mathcal{I} and $f: \mathcal{C}(u)(c) \to d$ is a morphism in $\mathcal{C}(j)$.

Example

- C: G → Cat has homotopy colimit = homotopy orbit of G-action on C(*).
- If C(*) is a set, then this gives the transport groupoid of the left G-action.

Homotopy Colimit Formula and Incl.-Excl. Principle

Theorem (Fiore-Lück-Sauer)

 $C: \mathcal{I} \rightarrow \mathbf{Cat}$ a pseudo functor, \mathcal{I} directly finite with a finite \mathcal{I} -CW-model, $\Lambda_n =$ the finite set of \mathcal{I} -n-cells $\lambda = \text{mor}(?, i_{\lambda}) \times D^n$, each F(i) of type (FP_R), then

$$\chi(\operatorname{hocolim}_{\mathcal{I}}\mathcal{C}; R) = \sum_{n \ge 0} (-1)^n \cdot \sum_{\lambda \in \Lambda_n} \chi(\mathcal{C}(i_{\lambda}); R)$$

Example

 $\mathcal{I} = \{k \leftarrow j \rightarrow \ell\} \text{ admits a finite model, } \Lambda_0 = \{k, \ell\} \text{ and } \Lambda_1 = \{j\}$ Theorem \Rightarrow $\chi(homotopy pushout of C) = \chi(C(k)) + \chi(C(\ell)) - \chi(C(j)).$

V. Comparison with Leinster's Notions.

Comparison with Leinster's Weightings

$$\begin{split} &\Gamma\text{=a finite category} \\ &A \text{ weighting on } \Gamma \text{ is a function } k^{\bullet} \colon \operatorname{ob}(\Gamma) \to \mathbb{Q} \text{ such that for all } \\ &\operatorname{objects} x \in \operatorname{ob}(\Gamma), \text{ we have } \sum_{y \in \operatorname{ob}(\Gamma)} |\operatorname{mor}(x, y)| \cdot k^{y} = 1. \end{split}$$

Theorem (Fiore-Lück-Sauer)

 \mathcal{I} a finite category, X a finite model, then the function k^{\bullet} : $ob(\mathcal{I}) \to \mathbb{Q}$ defined by

$$k^{y} := \sum_{n \ge 0} (-1)^{n} (number of n-cells of X based at y)$$

is a weighting on \mathcal{I} . More generally, finite free $R\Gamma$ -resolutions of <u>R</u> produce weightings.

Comparison with Leinster's Euler Characteristics

Definition (Leinster)

A finite category Γ has an Euler characteristic in the sense of Leinster if it admits both a weighting k^{\bullet} and a coweighting k_{\bullet} . In this case, its Euler characteristic in the sense of Leinster is defined as

$$\chi_L(\Gamma) := \sum_{y \in \mathsf{ob}(\Gamma)} k^y = \sum_{x \in \mathsf{ob}(\Gamma)} k_x.$$

This agrees with $\chi^{(2)}$ when Γ is finite, EI, skeletal, and the left $\operatorname{aut}_{\Gamma}(y)$ -action on $\operatorname{mor}_{\Gamma}(x, y)$ is free for every two objects $x, y \in \operatorname{ob}(\Gamma)$. Proof: *K*-theoretic Möbius inversion.

VI. Applications and Summary.

Applications

- Let G be a group which admits a finite G-CW-model Y for the classifying space for proper G-actions. The equivariant Euler characteristic of Y is the functorial (L²) Euler characteristic of the proper orbit category.
- 2 Developability of Haefliger complexes of groups:

$$\chi^{(2)}(\operatorname{hocolim}_{\mathcal{X}/G} F) = rac{\chi^{(2)}(\mathcal{X})}{|G|} = rac{\chi(\mathcal{X};\mathbb{C})}{|G|} = rac{\chi(B\mathcal{X};\mathbb{C})}{|G|}.$$

Summary

- We have introduced notions of finiteness obstruction, Euler characteristic, and L^2 -Euler characteristic for wide classes of categories, including certain infinite ones.
- Origins lie in the homological algebra of modules over categories and modules over group von Neumann algebras.
- These notions are compatible with: equivalences of categories, coverings, fibrations, finite products, finite coproducts, homotopy colimits.
- In the case of groups, the L^2 -Euler characteristic agrees with the classical L^2 -Euler characteristic of groups.
- The notions are geometric: agree with $\chi(B\Gamma)$ or equivariant Euler characteristic in certain cases.
- The notions are combinatorial: have *K*-theoretic Möbius inversion.