What is Mathematical Music Theory?

Thomas M. Fiore

http://www-personal.umd.umich.edu/~tmfiore/

Introduction

Mathematical music theory uses *modern mathematical structures* to

- 1. analyze works of music (describe and explain them),
- study, characterize, and reconstruct musical objects such as the consonant triad, the diatonic scale, the Ionian mode, the consonance/dissonance dichotomy...
- 3. compose
- 4. ...

Levels of Musical Reality, Hugo Riemann

There is a distinction between three levels of musical reality.

- Physical level: a tone is a pressure wave moving through a medium, "Ton"
- Psychological level: a tone is our experience of sound, "Tonempfindung"
- Intellectual level: a tone is a position in a tonal system, described in a syntactical meta-language, "Tonvorstellung". Mathematical music theory belongs to this realm.

Work of Mazzola and Collaborators

- Mazzola, Guerino. Gruppen und Kategorien in der Musik. Entwurf einer mathematischen Musiktheorie. Research and Exposition in Mathematics, 10. Heldermann Verlag, Berlin, 1985.
- Mazzola, Guerino. The topos of music. Geometric logic of concepts, theory, and performance. In collaboration with Stefan Göller and Stefan Müller. Birkhäuser Verlag, Basel, 2002.
- Noll, Thomas, Morphologische Grundlagen der abendländischen Harmonik in: Moisei Boroda (ed.), Musikometrika 7, Bochum: Brockmeyer, 1997.

These developed a mathematical meta-language for music theory, investigated concrete music-theoretical questions, analyzed works of music, and did compositional experiments (NoII 2005).

Lewin

- ► Lewin, David. *Generalized Musical Intervals and Transformations*, Yale University Press, 1987.
- ► Lewin, David. *Musical Form and Transformation: 4 Analytic Essays*, Yale University Press, 1993.

Lewin introduced *generalized interval systems* to analyze works of music. The operations of Hugo Riemann were a point of departure. Mathematically, a generalized interval system is a *simply transitive group action*.



The \mathbb{Z}_{12} Model of Pitch Class

We have a bijection between the set of pitch classes and \mathbb{Z}_{12} .

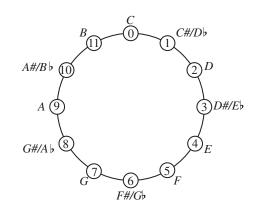


Figure: The musical clock.

Transposition and Inversion

We have the musical operations transposition (rotation)

$$T_n: \mathbb{Z}_{12} \to \mathbb{Z}_{12}$$

$$T_n(x) := x + n$$

and inversion (reflection)

$$I_n: \mathbb{Z}_{12} \to \mathbb{Z}_{12}$$

$$I_n(x) := -x + n.$$

These generate the dihedral group of order 24 (symmetries of 12-gon).

Major and Minor Triads

Major and minor triads are very common in Western music.

$$\begin{aligned} \textit{C-major} &= \langle \textit{C}, \textit{E}, \textit{G} \rangle \\ &= \langle 0, 4, 7 \rangle \end{aligned}$$

c-minor =
$$\langle G, E \rangle, C \rangle$$

= $\langle 7, 3, 0 \rangle$

	The set S of consonant triads				
	Major Triads	Minor Triads			
	$C = \langle 0, 4, 7 \rangle$	$\langle 0, 8, 5 \rangle = f$			
C	$\sharp = D\flat = \langle 1, 5, 8 \rangle$	$\langle 1, 9, 6 \rangle = f \sharp = g \flat$			
	$D = \langle 2, 6, 9 \rangle$	$\langle 2, 10, 7 \rangle = g$			
$D\sharp$	$E = E \flat = \langle 3, 7, 10 \rangle$	$\langle 3, 11, 8 \rangle = g \sharp = a \flat$			
	$E = \langle 4, 8, 11 \rangle$	$\langle 4,0,9\rangle = a$			
	$F=\langle 5,9,0 angle$	$\langle 5, 1, 10 \rangle = a\sharp = b\flat$			
F♯	$=G\flat=\langle 6,10,1\rangle$	$\langle 6, 2, 11 \rangle = b$			
	$G = \langle 7, 11, 2 \rangle$	$\langle 7,3,0\rangle = c$			
G	$G\sharp=A\flat=\langle 8,0,3\rangle$	$\langle 8,4,1\rangle = c\sharp = d\flat$			
	$A = \langle 9, 1, 4 \rangle$	$\langle 9,5,2\rangle=d$			
$A\sharp$	$=B\flat=\langle10,2,5\rangle$	$\langle 10,6,3\rangle = d\sharp = e\flat$			
	$B = \langle 11, 3, 6 \rangle$	$\langle 11,7,4 \rangle = e$			
	· · · · · · · · · · · · · · · · · · ·	<u> </u>			

Neo-Riemannian P, L, R operations

Each consonant triad shares two common tones with three other consonant triads:

$$P\langle \mathbf{0}, 4, \mathbf{7} \rangle = \langle \mathbf{7}, 3, \mathbf{0} \rangle$$

 $P(C\text{-major}) = c\text{-minor}$
 $L\langle 0, \mathbf{4}, \mathbf{7} \rangle = \langle 11, \mathbf{7}, \mathbf{4} \rangle$
 $(C\text{-major}) = e\text{-minor}$
 $R\langle \mathbf{0}, \mathbf{4}, \mathbf{7} \rangle = \langle \mathbf{4}, \mathbf{0}, 9 \rangle$
 $R(C\text{-major}) = a\text{-minor}$.

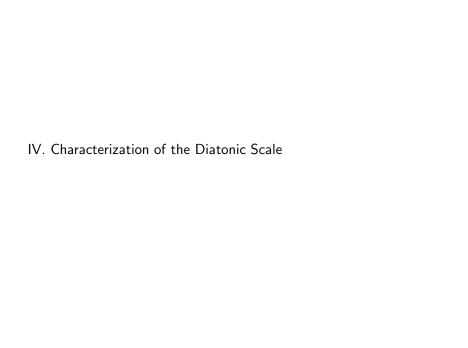
Parsimonious voice leading: minimal motion in moving voice!

Uniqueness of the Consonant Triad

Theorem (Richard Cohn, 1997)

The consonant triad is uniquely characterized by parsimonious voice leading. Namely, suppose $\langle 0,x,y\rangle$ is a 3-note chord in \mathbb{Z}_{12} , and we generate its orbit under the dihedral group. Then the P, L, R operations associated to the orbit of $\langle 0,x,y\rangle$ admit parsimonious voice leading if and only if $\langle 0,x,y\rangle$ is a consonant triad.

Remarkable: this result is completely independent of the acoustic properties of the consonant triad!



Scales

Definition

A **scale** is a subset of \mathbb{Z}_c for some nonnegative integer c.

Example

The diatonic scale is

$$\{0,2,4,5,7,9,11\} = \{C,D,E,F,G,A,B\}.$$

It is **generated** by the perfect fifth=7, namely:

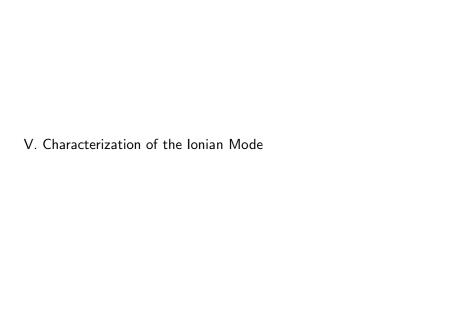
F	С	G	D	Α	Ε	В
5	<i>5</i> +7	<i>5+2*7</i>	5 + 3*7	<i>5+4*7</i>	<i>5+5*7</i>	<i>5+6*7</i>
5	0	7	2	9	4	11.

Uniqueness of the Diatonic Scale Theorem of Clough–Engebretsen–Kochavi, 1999

Suppose $S \subseteq \mathbb{Z}_c$ is a scale and satisfies the following properties.

- 1. *S* is **generated**.
- 2. *S* is **well-formed**.
- 3. S is Myhill.
- 4. *S* is **distributionally even**.
- 5. S is maximally even.
- 6. *S* is **deep**.
- 7. *S* is **hyperdiatonic**, that is, *S* is maximally even, c = 2(|S| 1), and 4|c.
- 8. S is **Balzano**, that is, S is maximally even, c = k(k+1), and S=generator=2k+1 with $k \ge 3$.

Then c=12 and S is a translate of the diatonic scale in the previous example.



Idea of Noll's Characterization

Question: on which note does the diatonic scale begin?

Answer: NoII characterizes the Ionian mode (=major scale) in terms of step-interval patterns, fifth/fourth folding patterns, and division. (See page 88=10).

Words and Christoffel Words

Let $\{a,b\}^*$ denote the free monoid on the set $\{a,b\}$. Elements of $\{a,b\}^*$ are called **words**, e.g. \emptyset , ab, ba, and abba, are words. $a^{-1}b$ is not a word.

Definition

Let p and q be relatively prime integers. The Christoffel word w of slope $\frac{p}{q}$ and length n=p+q is the lower discretization of the line $y=\frac{p}{q}x$. That is

$$w_i = \left\{ \begin{array}{ll} a & \textit{if } p \cdot i \; \textit{mod } n > p \cdot (i-1) \; \textit{mod } n \\ b & \textit{if } p \cdot i \; \textit{mod } n$$

Example

Tetractys.

Sturmian Morphisms

Consider the monoid homomorphisms $\{a,b\}^* \to \{a,b\}^*$ defined on generators a and b as follows.

	а	Ь
G	а	ab
\tilde{G}	а	ba
D	ba	b
Ď	ab	Ь
Ε	b	а

 $St_0 = \text{monoid generated by } G$, \tilde{G} , D, \tilde{D}

= monoid of **special Sturmian morphisms**

 $St = monoid generated by G, \tilde{G}, D, \tilde{D}, and E$

= monoid of **Sturmian morphisms**

Conjugates and Dividers

Two words w and w' are **conjugate** if there exist words u and v such that w = uv and w' = vu, that is, w' is a **rotation** of w.

Theorem

A word r is conjugate to a Christoffel word if and only if r = F(ab) for some Sturmian morphism $F \in St$.

If r = F(ab) for a special Sturmian morphism $F \in St_0$, we factor r by writing r = F(a)|F(b). The vertical line is the **divider**.

Christoffel Duality and its Extension to Conjugates

Definition

Let p and q be relatively prime. The Christoffel dual word w^* to the Christoffel word w of slope $\frac{p}{q}$ is the Christoffel word of slope $\frac{p^*}{a^*}$ where p^* and q^* are the multiplicative inverses of p and q in \mathbb{Z}_n .

Example

The dual of w = aab is $w^* = xxy$.

Example

The dual of the step interval pattern of the Lydian mode is the fifth-fourth folding pattern of the Lydian mode!

Christoffel Duality and its Extension to Conjugates

Theorem (Clampitt–Domínguez–Noll, 2007)

The assignment $w \mapsto w^*$ on Christoffel words extends to a bijection

$$\{conjugates \ of \ w\} \xrightarrow{(-)^{\sqcup}} \{conjugates \ of \ w^*\}$$

called **plain adjoint**. If F is a composite of G's and D's and r = F(ab), then $r^{\square} = F^{rev}(xy)$ where F^{rev} is the reverse of F. A similar statement holds if F is a composite of G's and \tilde{D} 's.

Example.

$$GG\tilde{D}(ab) = aaabaab = r = \text{ step-interval pattern of Lydian}$$
 $\tilde{D}GG(xy) = \tilde{D}G(xxy) = \tilde{D}(xxxy) = xyxyxyy = r^{\square} = \text{ fifth-fourth folding pattern of Lydian}$

Characterization of Ionian Mode

Remarkable Fact: If we take in the Theorem

w = aaabaab = Lydian step-interval pattern,

then $(-)^{\square}$ is precisely the bijection between the seven diatonic modes and their fifth-fourth foldings! See page 88=10 and page 94=16 of NoII.

Theorem (Divider Incidence, Clampitt–Domínguez–Noll, 2007) Let r be a conjugate of a Christoffel word. The following are equivalent.

- ightharpoonup r = F(ab) where F is a composite of G's and D's.
- ▶ The dividing note of r and r^{\square} is the same.

Thus, the Ionian mode is distinguished amongst all seven modes. See page 96=18 of NoII for more characterizations.

Society, Meetings, Journal

Professional Society: Society for Mathematics and Computation in Music

Journal: Journal of Mathematics and Music, promotional copies available

Meeting: Special Session on Mathematical Techniques in Musical Analysis, Joint Meeting, New Orleans, January 6th, 2011

Meeting: MAA Minicourse on Geometry and Algebra in Music Theory, Joint Meeting, New Orleans, January 7th and 9th, 2011

Meeting: MCM 2011, IRCAM, Paris, France, June 15-17, 2011