What is Mathematical Music Theory?

Thomas M. Fiore

http://www-personal.umd.umich.edu/~tmfiore/

Introduction

Mathematical music theory uses *modern mathematical structures* to

- analyze works of music (describe and explain them),
- study, characterize, and reconstruct musical objects such as the consonant triad, the diatonic scale, the lonian mode, the consonance/dissonance dichotomy...
- Compose
- **(4**) ...

Levels of Musical Reality, Hugo Riemann

There is a distinction between three levels of musical reality.

- Physical level: a tone is a pressure wave moving through a medium, "Ton"
- Psychological level: a tone is our experience of sound, "Tonempfindung"
- Intellectual level: a tone is a position in a tonal system, described in a syntactical meta-language, "*Tonvorstellung*". Mathematical music theory belongs to this realm.

Work of Mazzola and Collaborators

- Mazzola, Guerino. Gruppen und Kategorien in der Musik. Entwurf einer mathematischen Musiktheorie. Research and Exposition in Mathematics, 10. Heldermann Verlag, Berlin, 1985.
- Mazzola, Guerino. The topos of music. Geometric logic of concepts, theory, and performance. In collaboration with Stefan Göller and Stefan Müller. Birkhäuser Verlag, Basel, 2002.
- Noll, Thomas, *Morphologische Grundlagen der abendländischen Harmonik* in: Moisei Boroda (ed.), *Musikometrika* 7, Bochum: Brockmeyer, 1997.

These developed a mathematical meta-language for music theory, investigated concrete music-theoretical questions, analyzed works of music, and did compositional experiments (NoII 2005).

Introduction and Basics

The Consonant Triad The Diatonic Scale The Ionian Mode Summary, Society, Meetings

Lewin

- Lewin, David. *Generalized Musical Intervals and Transformations*, Yale University Press, 1987.
- Lewin, David. *Musical Form and Transformation: 4 Analytic Essays*, Yale University Press, 1993.

Lewin introduced *generalized interval systems* to analyze works of music. The operations of Hugo Riemann were a point of departure. Mathematically, a generalized interval system is a *simply transitive group action.*

Introduction and Basics

The Consonant Triad The Diatonic Scale The Ionian Mode Summary, Society, Meetings

II. Basics

The \mathbb{Z}_{12} Model of Pitch Class

We have a bijection between the set of pitch classes and \mathbb{Z}_{12} .

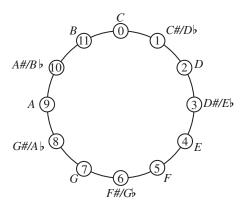


Figure: The musical clock.

Transposition and Inversion

We have the musical operations transposition (rotation)

 $T_n:\mathbb{Z}_{12}\to\mathbb{Z}_{12}$

$$T_n(x) := x + n$$

and *inversion* (reflection)

$$I_n: \mathbb{Z}_{12} \to \mathbb{Z}_{12}$$

 $I_n(x):= -x + n.$

These generate the dihedral group of order 24 (symmetries of 12-gon).

III. Characterization of the Consonant Triad

Major and Minor Triads

Major and minor triads are very common in Western music.

$$C\text{-major} = \langle C, E, G \rangle$$
$$= \langle 0, 4, 7 \rangle$$
$$c\text{-minor} = \langle G, E\flat, C \rangle$$
$$= \langle 7, 3, 0 \rangle$$

The set S of co	The set S of consonant triads		
Major Triads	Minor Triads		
$C = \langle 0, 4, 7 \rangle$	$\langle 0, 8, 5 \rangle = f$		
$C\sharp=Dlat{b}=\langle 1,5,8 angle$	$\langle 1,9,6 angle = f\sharp = g\flat$		
$D=\langle 2,6,9 angle$	$\langle 2, 10, 7 \rangle = g$		
$D\sharp = E\flat = \langle 3, 7, 10 angle$	$\langle 3,11,8 angle = g \sharp = a \flat$		
$E=\langle 4,8,11 angle$	$\langle 4, 0, 9 angle = a$		
${\it F}=\langle 5,9,0 angle$	$\langle 5,1,10 angle = a \sharp = b lat$		
$F \sharp = G \flat = \langle 6, 10, 1 \rangle$	$\langle 6,2,11 angle =b$		
$G=\langle 7,11,2 angle$	$\langle 7,3,0 angle = c$		
$G \sharp = A \flat = \langle 8, 0, 3 angle$	$\langle 8,4,1 angle = c \sharp = d \flat$		
${\cal A}=\langle 9,1,4 angle$	$\langle 9,5,2 angle = d$		
$A\sharp=B\flat=\langle 10,2,5 angle$	$\langle 10, 6, 3 angle = d \sharp = e \flat$		
$B=\langle 11,3,6 angle$	$\langle 11,7,4 angle = e$		

Neo-Riemannian P, L, R operations

Each consonant triad shares two common tones with three other consonant triads:

 $P\langle \mathbf{0}, \mathbf{4}, \mathbf{7}
angle = \langle \mathbf{7}, \mathbf{3}, \mathbf{0}
angle$ P(C-major) = c-minor $L\langle 0, \mathbf{4}, \mathbf{7}
angle = \langle 11, \mathbf{7}, \mathbf{4}
angle$ (C-major) = e-minor $R\langle \mathbf{0}, \mathbf{4}, \mathbf{7}
angle = \langle \mathbf{4}, \mathbf{0}, 9
angle$ R(C-major) = a-minor.

Parsimonious voice leading: minimal motion in moving voice!

Uniqueness of the Consonant Triad

Theorem (Richard Cohn, 1997)

The consonant triad is uniquely characterized by parsimonious voice leading. Namely, suppose $\langle 0, x, y \rangle$ is a 3-note chord in \mathbb{Z}_{12} , and we generate its orbit under the dihedral group. Then the P, L, R operations associated to the orbit of $\langle 0, x, y \rangle$ admit parsimonious voice leading if and only if $\langle 0, x, y \rangle$ is a consonant triad.

Remarkable: this result is completely independent of the acoustic properties of the consonant triad!

IV. Characterization of the Diatonic Scale

Scales

Definition

A scale is a subset of \mathbb{Z}_c for some nonnegative integer c.

Example

The diatonic scale is

$$\{0, 2, 4, 5, 7, 9, 11\} = \{C, D, E, F, G, A, B\}.$$

It is **generated** *by the perfect fifth=7, namely:*

F	С	G	D	A	Ε	В
5	5+7	<i>5+2*</i> 7	5 + 3 * 7	5+4*7	5+5*7	5+6 * 7
5	0	7	2	9	4	11.

Uniqueness of the Diatonic Scale Theorem of Clough–Engebretsen–Kochavi, 1999

Suppose $S \subseteq \mathbb{Z}_c$ is a scale and satisfies the following properties.

- S is generated.
- **3** is well-formed.
- S is Myhill.
- **3** *S* is **distributionally even**.
- **3** *S* is **maximally even**.
- **5** is **deep**.
- S is hyperdiatonic, that is, S is maximally even, c = 2(|S| - 1), and 4|c.
- ③ S is **Balzano**, that is, S is maximally even, c = k(k+1), and S=generator=2k + 1 with $k \ge 3$.

Then c = 12 and S is a translate of the diatonic scale in the previous example.

V. Characterization of the Ionian Mode

Idea of Noll's Characterization

Question: on which note does the diatonic scale begin?

Answer: Noll characterizes the Ionian mode (=major scale) in terms of step-interval patterns, fifth/fourth folding patterns, and division. (See page 88=10).

Words and Christoffel Words

Let $\{a, b\}^*$ denote the free monoid on the set $\{a, b\}$. Elements of $\{a, b\}^*$ are called **words**, e.g. \emptyset , *ab*, *ba*, and *abba*, are words. $a^{-1}b$ is not a word.

Definition

Let p and q be relatively prime integers. The **Christoffel word** w of slope $\frac{p}{q}$ and length n = p + q is the lower discretization of the line $y = \frac{p}{q}x$. That is

$$w_i = \begin{cases} a & if \ p \cdot i \ mod \ n > p \cdot (i-1) \ mod \ n \\ b & if \ p \cdot i \ mod \ n$$

Example

Tetractys.

Sturmian Morphisms

Consider the monoid homomorphisms $\{a, b\}^* \to \{a, b\}^*$ defined on generators *a* and *b* as follows.

	а	b
G	а	ab
Ĝ	а	ba
D	ba	b
Ď	ab	Ь
Ε	b	а

 $St_0 =$ monoid generated by G, \tilde{G} , D, \tilde{D}

= monoid of special Sturmian morphisms St = monoid generated by G, \tilde{G} , D, \tilde{D} , and E= monoid of Sturmian morphisms

Conjugates and Dividers

Two words w and w' are **conjugate** if there exist words u and v such that w = uv and w' = vu, that is, w' is a **rotation** of w.

Theorem

A word r is conjugate to a Christoffel word if and only if r = F(ab) for some Sturmian morphism $F \in St$.

If r = F(ab) for a special Sturmian morphism $F \in St_0$, we factor r by writing r = F(a)|F(b). The vertical line is the **divider**.

Christoffel Duality and its Extension to Conjugates

Definition

Let p and q be relatively prime. The Christoffel dual word w^* to the Christoffel word w of slope $\frac{p}{q}$ is the Christoffel word of slope $\frac{p*}{q^*}$ where p^* and q^* are the multiplicative inverses of p and q in \mathbb{Z}_n .

Example

The dual of w = aab is $w^* = xxy$.

Example

The dual of the step interval pattern of the Lydian mode is the fifth-fourth folding pattern of the Lydian mode!

Christoffel Duality and its Extension to Conjugates

Theorem (Clampitt–Domínguez–Noll, 2007)

The assignment $w \mapsto w^*$ on Christoffel words extends to a bijection

$$\{\text{conjugates of } w\} \xrightarrow{(-)^{\square}} \{\text{conjugates of } w^*\}$$

called **plain adjoint**. If F is a composite of G's and D's and r = F(ab), then $r^{\Box} = F^{rev}(xy)$ where F^{rev} is the reverse of F. A similar statement holds if F is a composite of G's and \tilde{D} 's.

Example.

 $GG\tilde{D}(ab) = aaabaab = r = \text{ step-interval pattern of Lydian}$ $\tilde{D}GG(xy) = \tilde{D}G(xxy) = \tilde{D}(xxxy) = xyxyxyy = r^{\Box} = \text{ fifth-fourth folding pattern of Lydian}$

Characterization of Ionian Mode

Remarkable Fact: If we take in the Theorem

w = aaabaab = Lydian step-interval pattern,

then $(-)^{\Box}$ is precisely the bijection between the seven diatonic modes and their fifth-fourth foldings! See page 88=10 and page 94=16 of NoII.

Theorem (Divider Incidence, Clampitt–Domínguez–Noll, 2007)

Let r be a conjugate of a Christoffel word. The following are equivalent.

- r = F(ab) where F is a composite of G's and D's.
- The dividing note of r and r^{\Box} is the same.

Thus, the Ionian mode is distinguished amongst all seven modes. See page 96=18 of NoII for more characterizations.

VI. Summary

We have introduced **mathematical music theory** by describing how it reconstructs certain musical objects which have survived the test of time: the consonant triad, the diatonic scale, and the Ionian mode. There is much more: analysis, composition, computation, ...

Society, Meetings, Journal

Professional Society: Society for Mathematics and Computation in Music

Journal: Journal of Mathematics and Music, promotional copies available

Meeting: Special Session on Mathematical Techniques in Musical Analysis, Joint Meeting, New Orleans, January 6th, 2011

Meeting: MAA Minicourse on Geometry and Algebra in Music Theory, Joint Meeting, New Orleans, January 7th and 9th, 2011

Meeting: MCM 2011, IRCAM, Paris, France, June 15-17, 2011