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1. Pitches and Pitch Classes

(1.1) (Pitch Classes and Frequency) If a and b are pitches designated by their
frequency, we write

a ∼ b

if a/b = 2j for some j ∈ Z, in other words if a and b are a whole number
of octaves apart. Prove that this defines an equivalence relation, in other
words show
a ∼ a for all pitches a
a ∼ b implies b ∼ a for all pitches a and b
a ∼ b and b ∼ c implies a ∼ c for all pitches a, b, and c.
The equivalences classes for this equivalence relation are called pitch classes.

(1.2) (Chromatic Pitches and Chromatic Pitch Classes) We may think
of the set Z as the set of chromatic, equal tempered pitches, with 0 being
middle C. The number 12 is the C above middle C. The pitches of the
keys of a piano correspond to a subset of Z. We write

a ∼ b

if b − a is divisible by 12. Prove that this defines an equivalence relation.
How is it related to the equivalence relation in 1.1?
The equivalences classes for this equivalence relation are also called pitch
classes. Thus Z12 is called the collection pitch classes (though of course
there are many more pitch classes as we saw in 1.1.)

2. Transposition and Inversion

Recall the transposition and inversion functions.

Tn : Z12
// Z12 , Tn(x) := x+ n mod 12

In : Z12
// Z12 , In(x) := −x+ n mod 12.
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(2.1) (Circle of Fifths, Circle of Fourths) Apply T7 repeatedly to 0 (re-
member to use arithmetic modulo 12). This is the circle of fifths. Why
should you expect to get 12 pitch classes? Apply T5 repeatedly to 0. This
is the circle of fourths. Why again should you expect to get 12 pitch classes?

(2.2) (Relations in the T/I-Group) Verify the relations

Tm ◦ Tn = Tm+n mod 12

Tm ◦ In = Im+n mod 12

Im ◦ Tn = Im−n mod 12

Im ◦ In = Tm−n mod 12

and conclude that the set of functions {Tn|n ∈ Z12}∪{In|n ∈ Z12} forms a
group. This group is called the T/I-group in the neo-Riemannian literature.

(2.3) (Group Structure of the T/I-Group) Recall the geometric proof that
the T/I-group is (isomorphic to) the dihedral group of order 24, that is,
the transpositions and inversions are the symmetries of the regular 12-
gon. Prove algebraically that the T/I-group is (isomorphic to) the dihedral
group of order 24 by verifying the generators and relations presentation of
the dihedral group, that is, find s and t in the T/I-group such that

s12 = 1, t2 = 1, tst = s−1.

(2.4) (Set Classes) Prove that the T/I-group acts on the set of subsets of Z12.
The orbits under this action are called set classes. Note that an orbit is a
set of sets, and an element of an element of an orbit is a pitch class. The
next problem should clarify this point.

(2.5) (Example of a Set Class) Write down the set class of {0, 4, 7}. Can
you say what this orbit is in musical terms? (Hint: use the dictionary to
translate the numbers back into pitch classes).

3. Group Theory

(3.1) (Group Actions and Orbits) If G is a group and X is a set, then a (left)
group action of G on X is a function

G×X → X

such that

g1(g2x) = (g1g2)x

1Gx = x

for all g1, g2 ∈ G and x ∈ X . For x, y ∈ X , we write x ∼ y if there exists
some g ∈ G such that gx = y. Prove that this is an equivalence relation, in
other words
x ∼ x
x ∼ y implies y ∼ x
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x ∼ y and y ∼ z implies x ∼ z
for all x, y, z ∈ X . An equivalence class

[x] = {y ∈ X |y ∼ x}

is called an orbit.

(3.2) (Group Actions as Homomorphisms into Symmetric Groups) Prove
that an action of a group G on a set X is the same as a group homomor-
phism ρ : G → Sym(X). Here Sym(X) denotes the the symmetric group
on the set X , that is, the group of bijections X → X with group operation
given by composition. Hint: to define ρ, assign to g ∈ G the bijection
x 7→ gx.

(3.3) (Simple Transitivity and Left/Right Multiplication) A group action
is transitive if for any x, y ∈ X there exists a g ∈ G such that gx = y,
in other words there is only one orbit and that orbit is all of X . A group
action is simple or free if

gx = g′x for some x ∈ X ⇒ g = g′.

A group action is simply transitive if it is both transitive and simple. More
succinctly, a group action is simply transitive if and only if for each x and
each y there exists a unique g ∈ G such that gx = y. Show that any group
acts simply transitively on itself via left multiplication. Similarly, show any
group acts simply transitively on itself (from the left) via right multiplica-
tion by the inverse, that is g · x := xg−1.

(3.4) (Example of Simple Transitivity) Let S be the following set of chords.

{G, g,E♭, e♭, B, b}

Let SIMP ∼= Sym(3) be the following group in cycle notation.

Id = () LP = (E♭ G B)(e♭ b g)
P = (E♭ e♭)(G g)(B b) PL = (E♭ B G)(e♭ g b)
L = (E♭ g)(G b)(B e♭) PLP = (E♭ b)(G e♭)(B g)

Prove that SIMP acts simply transitively on S. There are several ways
to do this, some more efficient than others... The fastest way is to proba-
bly to use the Orbit-Stabilizer Theorem as in the next problem. The set
of pitch classes underlying the set of chords {G, g,E♭, e♭, B, b} is called a
hexatonic system. There are in four hexatonic systems, they correspond to
the four orbits of the PL-group acting on the set of major and minor chords.

(3.5) (Orbit-Stabilizer Theorem and Simple Transitivity) If a group G
acts on a set X , then the stabilizer of x ∈ X is the group

Gx := {g ∈ G|gx = x}.

The Orbit-Stabilizer Theorem says the following.

Theorem 3.1. If a finite group G acts on a set X, then

|G|/|Gx| = |orbit of x|

where | · | means “number of elements.”
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The finiteness assumption can be left off by changing the statement into a
bijection between cosets and equivalence classes. Use the Orbit-Stabilizer
Theorem to prove the following.
(a) If a finite group G acts transitively on a finite set X and |X | = |G|,

then G acts simply transitively.
(b) If a finite group G acts simply transitively on a set X , then |X | = |G|.

(3.6) (Dual Groups and the Left/Right Regular Representations)
Let Sym(S) be the symmetric group on the set S. Two subgroups G and
H of the symmetric group Sym(S) are called dual if their natural actions
on S are simply transitive and each is the centralizer of the other, that is

CSym(S)(G) = H and CSym(S)(H) = G.

Consider now S = G and the left and right regular representations λ, ρ : G →
Sym(G), which are defined by λg(h) = gh and ρg(h) = hg−1. Recall that
λ and ρ are embeddings. We denote the images by λ(G) and ρ(G). In
problem 3.3 you proved that the natural actions of the groups λ(G) and
ρ(G) are simply transitive. Prove in one line that the groups λ(G) and
ρ(G) commute. Next, prove that they actually centralize one-another. The
pair λ(G) and ρ(G) are the fundamental example of dual groups.

4. The Neo-Riemannian Group

Recall the neo-Riemannian operations P , L, and R. The triad P (x) is that triad
of opposite type as x with the first and third notes switched. The triad L(x) is that
triad of opposite type as x with the second and third notes switched. The triad
R(x) is that triad of opposite type as x with the first and second notes switched.

(4.1) (Computation of P , L, and R) Calculate P 〈1, 5, 8〉, L〈10, 6, 3〉, and
R〈9, 1, 4〉 using the table of major and minor triads below.

Major Triads Minor Triads

C = 〈0, 4, 7〉 〈0, 8, 5〉 = f
C♯ = D♭ = 〈1, 5, 8〉 〈1, 9, 6〉 = f♯ = g♭

D = 〈2, 6, 9〉 〈2, 10, 7〉 = g
D♯ = E♭ = 〈3, 7, 10〉 〈3, 11, 8〉 = g♯ = a♭

E = 〈4, 8, 11〉 〈4, 0, 9〉 = a
F = 〈5, 9, 0〉 〈5, 1, 10〉 = a♯ = b♭

F ♯ = G♭ = 〈6, 10, 1〉 〈6, 2, 11〉 = b
G = 〈7, 11, 2〉 〈7, 3, 0〉 = c

G♯ = A♭ = 〈8, 0, 3〉 〈8, 4, 1〉 = c♯ = d♭
A = 〈9, 1, 4〉 〈9, 5, 2〉 = d

A♯ = B♭ = 〈10, 2, 5〉 〈10, 6, 3〉 = d♯ = e♭
B = 〈11, 3, 6〉 〈11, 7, 4〉 = e

(4.2) (Order of P , L, and R) Determine the order of P , L, and R.
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(4.3) (Commutative vs. Noncommutative Diagrams) Does the diagram

Z12
I0

//

T2

��

Z12

T2

��

Z12
I0

// Z12

commute? In other words, is the equation T2I0 = I0T2 true?

(4.4) (Dual Groups and Networks) Insert 〈0, 4, 7〉 into the upper left circle
of the network

onmlhijk R
//

T2

��

onmlhijk
T2

��onmlhijk
R

//onmlhijk
and verify that the result is the same no matter which path you take. Com-
pare this with Problem 4.3 above. The contextual inversion R is in the dual
group to the T/I-group, but the inversion I0 is not. What else is different
about the two examples, e.g., how are the inputs different?

(4.5) (Dual Groups and Networks) Insert 〈0, 4, 7〉 into the upper left circle
of the network

onmlhijk R
//

I2

��

onmlhijk
I2

��onmlhijk
R

//onmlhijk
and verify that the result is the same no matter which path you take. Com-
pare this with Problem 4.3 above.
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Figure 1. The Oettingen/Riemann Tonnetz is a tiling of the plane

(4.6) (LR-chain in Beethoven) Calculate each of the following.

R〈0, 4, 7〉

L ◦R〈0, 4, 7〉

R ◦ L ◦R〈0, 4, 7〉

L ◦R ◦ L ◦R〈0, 4, 7〉

Next translate the results into chord names using the table above. How does
this relate to the chord progression in the second movement of Beethoven’s
Ninth Symphony? Use the chord progression in Beethoven’s Ninth Sym-
phony to determine the order of the element LR in the PLR-group.

5. Geometry of the neo-Riemannian Group

(5.1) (Fundamental Domain for the Tonnetz)
Recall that the Oettingen/Riemann Tonnetz is a tiling of the plane (Rie-
mann did not use equal-tempered tuning, nor the attendant enharmonic
equivalence). Figure 1 indicates the Tonnetz, which extends infinitely up
and down and left and right. However, this is not a true representation
of the Oettingen/Riemann Tonnetz because vertices are written as pitch
classes instead of pitches. Vertices that are identified in the neo-Riemannian
Tonnetz have the same number in Figure 1. The neo-Riemannian Tonnetz
is a tiling of the torus, it is the quotient of the Oettingen/Riemann Ton-
netz by pitch-class equivalence. Problem: draw a parallelogram on Figure
1 which is a fundamental domain for the quotient, that is, draw a parallelo-
gram which gives the torus when the top and bottom and also the left and
right are identified, but no points in the interior are identified. Recent work
of Marek Žabka in the Journal of Mathematics and Music investigates the
musical ramifications of choosing different fundamental domains.
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(5.2) (Geometry of P , L, R Operations) Say in words what the P , L, and R
operations do to the triangles on the neo-Riemannian Tonnetz.

(5.3) (Word Metric) Use the fundamental domain you drew in Problem 5.1 to
find an upper bound on the minimum number of P , L, R moves it takes to
get from one triangle to another.


