A Thomason Model Structure on the Category of Small n-fold Categories

AMS Special Session in Algebraic Topology in Honor of Bill Singer

Thomas M. Fiore

Joint work with Simona Paoli

www.math.uchicago.edu/~fiore/
arxiv:0808.4108

1. Motivation

- 2. Double Categories
- 3. Model Structures for Higher Categories in Low Dimensions
- 4. Thomason Model Structure on Cat
- 5. *n*-fold Categories
- 6. Main Theorem 1: n-fold Grothendieck Construction is Homotopy Inverse to n-fold Nerve
- 7. Main Theorem 2: Thomason Model Structure on **nFoldCat**.

Motivation

When do we consider two categories A and B the same?

Two different possibilities:

- 1) If there is a functor $F: A \longrightarrow B$ such that $NF: NA \longrightarrow NB$ is a weak homotopy equivalence. (Thomason 1980)
- 2) If there is a fully faithful and essentially surjective functor $F: A \rightarrow B$. (Joyal-Tierney 1991)
- $2) \Rightarrow 1)$

Motivation: 2-categories vs. Double Categories

- A 2-category is like an ordinary category except a 2-category has Hom-categories.
 Example: Top.
- A double category is like an ordinary category except a double category has a category of objects and a category of morphisms. Example: Bimodules.
- Recent examples show 2-categories are not enough, we need double categories.

Motivation: Why consider model structures on DblCat and nFoldCat?

Model categories have found great utility in comparing notions of $(\infty, 1)$ -category.

Bergner, Joyal-Tierney, Rezk, Toën...:

Theorem The following model categories are Quillen equivalent: simplicial categories, Segal categories, complete Segal spaces, and quasicategories.

So we can expect model structures to also be of use in an investigation of iterated internalizations.

1. Motivation

2. Double Categories

- 3. Model Structures for Higher Categories in Low Dimensions
- 4. Thomason Model Structure on Cat
- 5. *n*-fold Categories
- 6. Main Theorem 1: n-fold Grothendieck Construction is Homotopy Inverse to n-fold Nerve
- 7. Main Theorem 2: Thomason Model Structure on **nFoldCat**.

Double Categories

Definition (Ehresmann 1963) A *double cate*gory \mathbb{D} is an internal category $(\mathbb{D}_0, \mathbb{D}_1)$ in Cat.

Definition A *double category* \mathbb{D} consists of a set of objects,

a set of horizontal morphisms,

a set of vertical morphisms, and

a set of squares with source and target as follows

$$\begin{array}{cccc}
A & \xrightarrow{f} & B & & A & \xrightarrow{f} & B \\
\downarrow & & \downarrow & & \downarrow & \alpha & \downarrow k \\
C & & C & \xrightarrow{g} & D
\end{array}$$

and compositions and units that satisfy the usual axioms and the interchange law.

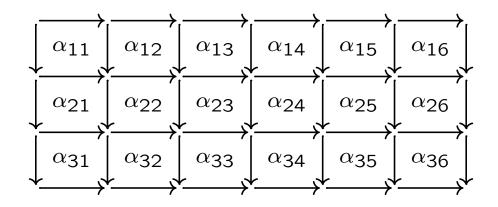
Examples of Double Categories

- 1. Any 2-category is a double category with trivial vertical morphisms.
- Compact closed 1-manifolds, 2-cobordisms, diffeomorphisms of 1-manifolds, diffeomorphisms of 2-cobordisms compatible with boundary diffeomorphisms
- 3. Rings, bimodules, ring maps, and twisted maps.
- 4. Topological spaces, parametrized spectra, continuous maps, and squares like in 3.

Bisimplicial Nerve of a Double Category

$$N: \mathbf{DblCat} \longrightarrow [\Delta^{\mathsf{op}} \times \Delta^{\mathsf{op}}, \mathbf{Set}]$$

$$(N\mathbb{D})_{j,k}=j\times k-$$
 matrices of composable squares in \mathbb{D}



N admits a left adjoint c called *double cate-gorification*.

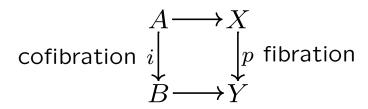
- 1. Motivation
- 2. Double Categories
- 3. Model Structures for Higher Categories in Low Dimensions
- 4. Thomason Model Structure on Cat
- 5. *n*-fold Categories
- 6. Main Theorem 1: n-fold Grothendieck Construction is Homotopy Inverse to n-fold Nerve
- 7. Main Theorem 2: Thomason Model Structure on **nFoldCat**.

Model Categories

A *model category* is a complete and cocomplete category C equipped with three subcategories:

- 1. weak equivalences
- 2. fibrations
- 3. cofibrations

which satisfy various axioms. Most notably: given a commutative diagram



in which at least one of i or p is a weak equivalence, then there exists a lift $h: B \longrightarrow X$.

Example The category Top with π_* -isomorphisms and Serre fibrations is a model category.

Model Structures on Cat

Theorem (Thomason 1980)
There is a model structure on **Cat** such that

- F is a weak equivalence if and only if Ex^2NF is so.
- F is a fibration if and only if Ex^2NF is so.

Theorem (Joyal-Tierney 1991)
There is a model structure on **Cat** such that

- ullet F is a weak equivalence if and only if F is an equivalence of categories.
- F is a fibration if and only if F is an *isofi-bration*.

Model Structures on 2-Cat

Theorem (Worytkiewicz–Hess–Parent–Tonks 2007)

There is a model structure on 2-Cat such that

- F is a weak equivalence if and only if Ex^2N_2F is so.
- F is a fibration if and only if Ex^2N_2F is so.

Theorem (Lack 2004)

There is a model structure on 2-Cat such that

- ullet F is a weak equivalence if and only if F is a biequivalence of 2-categories.
- *F* is a fibration if and only if *F* is an *equiv- fibration*.

Model Structures on **DblCat**

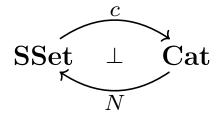
Theorems (Fiore–Paoli–Pronk, AGT, 2008)
There exist model structures on **DblCat** for each of the following types of weak equivalences.

- ullet F is a weak equivalence if and only if F is fully faithful and "essentially surjective."
- F is a weak equivalence if and only if F is a weak equivalence of double categories as algebras in Cat(Graph).
- F is a weak equivalence if and only if $N_h F$ is a weak equivalence in $[\Delta^{op}, \mathbf{Cat}]$.

- 1. Motivation
- 2. Double Categories
- 3. Model Structures for Higher Categories in Low Dimensions
- 4. Thomason Model Structure on Cat
- 5. *n*-fold Categories
- 6. Main Theorem 1: n-fold Grothendieck Construction is Homotopy Inverse to n-fold Nerve
- 7. Main Theorem 2: Thomason Model Structure on **nFoldCat**.

Thomason Structure on Cat

Adjunction:



cX is the free category on the graph (X_0, X_1) modulo the relation below.

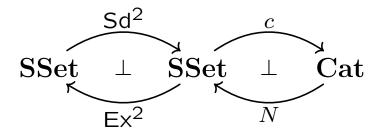
 $g \circ f \sim h$ whenever X has a 2-simplex

$$\xrightarrow{f} \sigma \xrightarrow{g} h$$

The unit component $\partial \Delta[3] \longrightarrow Nc(\partial \Delta[3])$ is **not** a weak equivalence.

Thomason Structure on Cat

The unit and counit of the adjunction



are weak equivalences (Fritsch–Latch 1979, Thomason). So the Thomason model structure on **Cat** is Quillen equivalent to **SSet** and also **Top**.

- 1. Motivation
- 2. Double Categories
- 3. Model Structures for Higher Categories in Low Dimensions
- 4. Thomason Model Structure on Cat
- 5. *n*-fold Categories
- 6. Main Theorem 1: n-fold Grothendieck Construction is Homotopy Inverse to n-fold Nerve
- 7. Main Theorem 2: Thomason Model Structure on **nFoldCat**.

n-fold Categories

Definition An n-fold category is an internal category in (n-1)FoldCat.

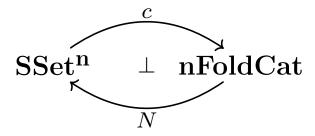
Example A double category is a 2-fold category.

We have a fully faithful n-fold nerve.

$$N: \mathbf{nFoldCat} \longrightarrow \mathbf{SSet^n}$$

$$(N\mathbb{D})_{j_1,\ldots,j_n} = \mathbf{nFoldCat}([j_1] \boxtimes \cdots \boxtimes [j_n], \mathbb{D}).$$

Adjunction:



The *n*-fold Grothendieck Construction

If $Y: (\Delta^{op})^{\times n} \longrightarrow \mathbf{Set}$, then the n-fold Grothendieck construction on Y is the n-fold category $\Delta^{\boxtimes n}/Y$ with

Objects =
$$\{(y, \overline{k}) | \overline{k} \in \Delta^{\times n}, y \in Y_{\overline{k}} \}$$

and n-cubes $(y, \overline{k}) \longrightarrow (z, \overline{\ell})$ are morphisms $\overline{f} \colon \overline{k} \longrightarrow \overline{\ell}$ in $\Delta^{\times n}$ such that

$$\overline{f}^*(z) = y.$$

This is the n-fold category of multisimplices of Y.

- 1. Motivation
- 2. Double Categories
- 3. Model Structures for Higher Categories in Low Dimensions
- 4. Thomason Model Structure on Cat
- 5. *n*-fold Categories
- 6. Main Theorem 1: n-fold Grothendieck Construction is Homotopy Inverse to n-fold Nerve
- 7. Main Theorem 2: Thomason Model Structure on nFoldCat.

Main Theorem 1: The n-fold Grothendieck Construction is Homotopy Inverse to the n-fold Nerve

(n=1 case was Quillen, Illusie, Waldhausen, Joyal-Tierney)

Theorem (Fiore-Paoli 2008)

The n-fold Grothendieck construction is a homotopy inverse to n-fold nerve. In other words, there are natural weak equivalences

$$N(\Delta^{\boxtimes n}/Y) \longrightarrow Y$$

$$\Delta^{\boxtimes n}/N(\mathbb{D}) \longrightarrow \mathbb{D}$$
.

Diagonal

 $SSet = [\Delta^{op}, Set] = simplicial sets$

 $\mathbf{SSet^n} = [(\Delta^{op})^{\times n}, \mathbf{Set}] = \mathbf{multisimplicial}$ sets

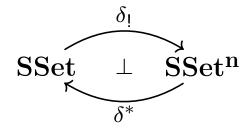
The diagonal functor

$$\delta: \Delta \longrightarrow \Delta^n$$

$$[m] \mapsto ([m], \dots, [m])$$

induces δ^* : $SSet^n \longrightarrow SSet$ by precomposition.

Adjunction:

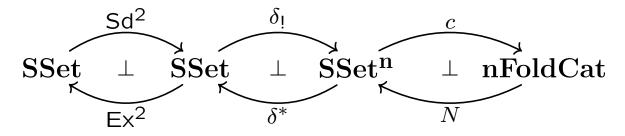


Main Theorem 2: Thomason Structure on **nFoldCat**

Theorem (Fiore—Paoli 2008) There is a cofibrantly generated model structure on **nFold-Cat** such that

- F is a weak equivalence if and only if $Ex^2\delta^*NF$ is so.
- F is a fibration if and only if $Ex^2\delta^*NF$ is so.

Further, the adjunction



is a Quillen equivalence.