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Introduction

Mathematics is a very powerful descriptive tool
in the physical sciences.

Similarly, musicians use mathematics to com-
municate ideas about music.

In these lectures, we will discuss the mathe-
matics commonly used by musicians.



What is Music Theory?

e David Hume: impressions become tangible
and form ideas.

e Music theory supplies us with conceptual
categories to organize and understand
Mmusic.

e In other words, music theory provides us
with the means to find a good way of hear-
ing a work of music.



Who Needs Music Theory?

e Composers
e Performers

e Listeners



Directions in U.S. Mathematical
Music Theory

e Scale Theory (Lecture 1)
(Carey, Clampitt, Clough, Douthett...)

e Set Theory (Lecture 2)
(Forte, Morris, Perle, Rahn...)

e Transformational Analysis (Lectures 3, 4)
(Cohn, Lewin, Satyendra...)



Scale Theory

Topics:
generation of scales, properties of scales, clas-
sification of scales

Mathematical Tools:
naive set theory, combinatorics, number the-
ory, continued fractions



Set Theory

Topics:

analyze music via collections of pitches and
pitch classes, transposition and inversion, es-
pecially fruitful for twentieth century music

Mathematical Tools:
naive set theory (not mathematical set the-
ory!), group theory, combinatorics



Transformational Theory

Topics:
Which transformations are idiomatic for a piece?

Mathematical Tools:
group actions on sets, topology



Basics

e Pitch and Pitch Class

e Integer Model of Pitch

Arithmetic Modulo 12

e 71> Model of Pitch Classes

e Intervals

e Transposition

e Inversion



Pitch and Pitch Class

A pitch is a single sound at a distinguishable
frequency.

If ¢« and b are pitches designated by their fre-
guency, we write

an~b

if a/b = 27 for some j € Z, in other words if a
and b are a whole number of octaves apart.

This is an equivalence relation, and the equiv-
alence classes are called pitch classes.
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The Integer Model of Pitch

We assume equal tempered tuning, in other
words, the octave is broken up into twelve
equal intervals. This is irrational.

Middle A has 440 Hz.

Middle C is assighed the number O, the next
higher pitch 1, and the next higher 2, etc. The
pitch just below middle ' is -1, just below that
is -2 etc.

< in Z corresponds to /ower than in pitch.
Two pitches belonging to the same pitch class
have the same letter name. In fact, we use

letter names to indicate pitch classes.

= Arithmetic Modulo 12
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.A—IB-IZ-II 109-8-7-6-5-4-3-2-10 12345 67 89 101121314151617 1819..
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Arithmetic Modulo 12

Think of a clock with 0 in the 12 o'clock po-
sition.

14+2=3 mod 12

11 4+1 =0 mod 12
1142 = 1 mod 12
114+ 5 = 4 mod 12

71> =1{0,1,2,3,4,5,6,7,8,9,10,11}
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The Z1o, Model of Pitch Class

Since we are using equal tempered tuning, we
can use enharmonic equivalence.

C=0
Cf=Db=1
D=2
Di=Eb=3
| D—

F=5
Fff = Gb =
G=7
Gi=Ab=38
A=

Af = Bb =10
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Intervals

We have a chromatic interval function.

int . Liqo X Lo — 2o

int(a,b) ==b—a

Interval

Name

Perfect Fifth

Perfect Fourth

Major T hird

Minor Third

semitone, half step

whole tone, whole step

NP WO

Tritone
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Transposition

The bijective function
Tn . le — Zlg

Tolz) =z +n

is called transposition by musicians, or trans-
lation by mathematicians.

T1(0) =1, T1(11) = 0, T%(3) = 10, Ty (7) =2
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Inversion

The bijective function
In Zi1p — Zqo

In(z) := —x+n

is called inversion by musicians, or reflection
by mathematicians.

Ip(1) =11, In(5) =7, I7(1) =6, I7(5) =2
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Scale Theory

A scale is a subset of Zip. Sometimes scale
means the transposition class of a subset.

A scale is the pitch material that a composer
draws on in a passage or work of music.

The most common scales are the major scale,
the minor scale, the pentatonic scale, the oc-
tatonic scale, the whole tone scale, and the
chromatic scale.

\/\/e introduce these and study their properties.
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The Major Scale

Consider repeated applications of 77 to F = 5.
50,7,2,9,4,11,6,1,8,3,10,5

F,C,G, D, A, E, B, Ft,CH{, G, Di, A}, F
T 1 D 7

This is the circle of fifths.
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The Major Scale

The C-major scale consists of the first seven
pitch classes in the circle of fifths (the white
keys on the piano).

{C,D,E,F,G,A,B,C}

{Oa 29 49 57 77 97 117 O}

The step intervals are 2-2-1-2-2-2-1. Any scale
with these step intervals is called a major scale
or diatonic scale.

The G-major scale consists of the seven pitch
classes in the circle of fifths beginning on C.

Theorem 1 The majorscaleis the unique scale
of cardinality seven with the largest number of
perfect fifths.
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The Minor Scale

As a set, a minor scale is the same as a major
scale. But the starting point is different. The
A-minor scale is

{A,B,C,D,E,F,G, A}

{9,11,0,2,4,5,7,9}.

The step intervals are 2-1-2-2-1-2-2. Any scale
with these step intervals is called a minor scale.

major=cheerful
minor=sad, mysterious

Example 1 Schumann, “The Happy Peasant”
is in F-major. Schumann, “The Wild Horse-
man’ is in A-minor, and then F-major.
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he Pentatonic Scale

The F-major pentatonic scale consists of the
first five pitch classes of the circle of fifths.

{F,G,A,C,D,F}

{5,7,9,0,2,5}

The step intervals are 2-2-3-2-3. Any scale

with these step intervals is called a pentatonic
scale.

The complement of a major scale is a penta-
tonic scale, for example the black keys form a
pentatonic scale.

Example 2 Indonesian Gamelan music, blues,
spirituals, Amazing Grace, blues, Bartok, De-
bussy
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The Octatonic Scale

The Db octatonic scale or Db diminished scale
iS

(Db, Eb, E, Ft, G, A, Bb, C, Db}

{1,3,4,6,7,9,10,0,1}.

The step intervals are 2-1-2-1-2-1-2-1. Any
scale with these step intervals is called an oc-
tatonic scale.

There are only three octatonic scales.

Example 3 Bartok, Rimsky-Korsakov, Scriabin,
Stravinsky, Jazz
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The Whole Tone Scale

The whole tone scale on C is
{C,D,E, Ft,GY, Af, C}

{0,2,4,6,8,10,0}.

The step intervals are 2-2-2-2-2-2. Any scale

with these step intervals is called a whole tone
scale.

There are only two whole tone scales.

Example 4 19th century Russian music, Bar-

tok, Debussy, impressionist composers, Jazz,
T helonius Monk
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The Chromatic Scale

The chromatic scale is
{C,Oﬁ,D,Dﬁ,E,F,Fﬁ,G,Gﬂ,A,Aﬁ,B,C}

{0,1,2,3,4,5,6,7,8,9,10,11,0}.

Example b Late 19th century music such as
Wagner, 20th century atonal music such as
Schoenberg, Berg, Webern, Krenek, Carter
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Scale Property: Generated

A scale is said to be generated if it is obtained
by an iteration of T3, for some n.

Example 6 The major scale is generated by
the interval of a perfect fifth by repeated ap-
plications of Ty.

{5,0,7,2,9,4,11}
Example 7 The pentatonic scale is generated

by the interval of a perfect fifth by repeated
applications of Ty.

{5,0,7,2,9}
Example 8 The octatonic scale is not gener-
ated.
{0,1,3,4,6,7,9,10}
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Scale Property: Well Formed

A generated scale is said to be well formed if
each generating interval spans the same num-
ber of scale steps.

Example 9 The pentatonic scale is well formed.

-

\
:
d

|
B
e

= nsanv

The pentatonic scale, generated by the perfect fifth, is well-formed since all
perfect fifths span the same number of steps (3).

EXAMPLE 1
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Scale Property: Myhill Property

A scale is said to have the Myhill Property
if each scale interval comes in two chromatic
Sizes.

Example 10 The major scale satisfies the My-
hill Property.

{0,2,4,5,7,9,11,0}

That is why we have major/minor seconds,
major/minor thirds, etc.

Theorem 2 (Carey, Clampitt) A non-chromatic,
generated scale in 71 o satisfies the Myhill Prop-
erty if and only it is well formed.
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Scale Property: Maximally Even

A scale is said to be maximally even if each
scale intervals comes in either one chromatic

size or two chromatic sizes of consecutive in-
tegers.

Example 11 The octatonic scale is maximally
even.

{0,1,3,4,6,7,9,10,0}

Scale Interval | Chromatic Sizes
1,2

3
4,5

6

HWN~
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Uniqueness of the Major Scale,

Classification and Enumeration

Theorem 3 (Clough, Engebretsen, Kochavi)
The major scale is uniquely characterized by
eight properties.

Theorem 4 (Clough, Engebretsen, Kochavi)
Scales have been classified according to these
eight properties. There are concrete algorithms
that enumerate all scales satisfying any subset
of the eight properties.
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Self Similarity

The major scale is self similar. any scale inter-
val contains (approximately) the same number
of step intervals with chromatic interval 1 as
the entire scale itself, namely 2/7.

span | smaller | no. of m2s | no. of M2s | larger | no. of m2s | no. of M2s
1 m2 1 0 M2 0 1
2 m3 1 1 M3 ¢ 2
3 P4 1 2 Ad 0 3
4 d5 2 2 P5 1 3
5 mé 2 3 Mé 1 4
6 m7 2 4 M7 1 5
EXAMPLE 3: DECOMPOSITION OF DIATONIC INTERVALS
INTQ STEP INTERVALS
Span Larger Smaller
1 2nds 01 < 277 < 1/1
2 3rds 0/2 < 277 < 1/2
3 4ths 0/3 < 2/ < 1/3
4 5ths 1/4 < 2/7 < 2/4
5 6ths 1/5 < 2717 < 2/5
6 7ths 1/6 < 2/1 < 2/6

EXAMPLE 4: DISTRIBUTION OF HALF STEPS IN DIATONIC INTERVALS
COMPARED WITH HALF STEPS PER OCTAVE
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Self Similarity and Other Prop-
erties

Theorem 5 (Carey, Clampitt) A non-chromatic,
generated scale in Zqo is self similar

if and only if it satisfies the Myhill property

if and only if it is well-formed.
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Summary

e In this talk I have introduced some of the
conceptual categories that music theorists
use to make aural impressions into tangible
ideas in the sense of Hume.

e T hese conceptual categories include Zqo,
the functions T, and I,, and scale proper-
ties.

e VWWe have used these tools in our under-
standing of Schumann, Debussy, and Bar-
tok.
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