Additions to Double Categories and Pseudo Algebras

Tom Fiore

www.math.uchicago.edu/ \sim fiore/

Towards Strict 2-Algebras and Crossed Modules

We continue our comparison of strict 2-algebras over the 2-theory of categories with crossed modules. We first state the update of Theorem 6 from the first part of the slides (the notion of group action there wasn't so good, so we avoid it here). Then we define the notions in the 2-equivalence.

Theorem 1 (F. 2007) The following 2-categories are 2-equivalent.

- (i) Crossed modules under groups I.
- (ii) 2-Groups C equipped with a 2-functor $I \longrightarrow C$.
- (iii) Double groups with folding and vertical group I.
- (iv) Strict 2-algebras over the 2-theory of categories with everything invertible and one object, with underlying I.

Recall the following slide.

Towards Strict 2-Algebras and Crossed Modules

It is often useful to consider one-object cases of categorical concepts and to recognize them as something familiar.

```
groupoids \subseteq 2-groupoids \subseteq double groupoids groups \subseteq 2-groups \subseteq double groups
```

Theorem 2 (Verdier, Brown-Spencer 1976,...) 2-groups are equivalent to crossed modules.

Theorem 3 (Brown-Spencer 1976) Edge symmetric double groups with folding structure with trivial holonomy are equivalent to crossed modules.

Question: What is a one-object strict 2-algebra over the 2-theory of categories with everything iso?

Crossed Modules

Definition 1 A crossed module is a group homomorphism $\partial: H \longrightarrow G$ with a left action

$$G \times H \longrightarrow H$$

$$(g,\alpha)\mapsto {}^g\alpha$$

by automorphisms such that:

1.
$$\partial(g\alpha) = g\partial(\alpha)g^{-1}$$
 for all $\alpha \in H$ and $g \in G$.

2.
$$\partial(\alpha)\beta = \alpha\beta\alpha^{-1}$$
 for all $\alpha, \beta \in H$.

Example 1 Any group I can be considered a crossed module with $\{e\} \hookrightarrow I$.

Crossed Modules

Example 2 The inclusion of a normal subgroup $H \triangleleft G$ is a crossed module.

Example 3 Let (X, A, *) be a based pair of topological spaces. Then

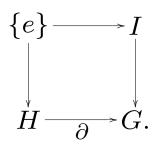
$$\partial$$
: $\pi_2(X, A, *) \longrightarrow \pi_1(A, *)$

is a crossed module.

Theorem 4 (Mac Lane-Whitehead 1950) Crossed modules model path-connected homotopy 2-types via this example.

Crossed Modules Under Groups

Definition 2 A crossed module under a group consists of a group I, a crossed module $\partial: H \longrightarrow G$, and a morphism of crossed modules



Strict 2-Algebras and Crossed Modules

Recall the Theorem.

Theorem 5 (F. 2007) The following 2-categories are 2-equivalent.

- (i) Crossed modules under groups I.
- (ii) 2-Groups $\mathcal C$ equipped with a 2-functor $I{\longrightarrow}\mathcal C$.
- (iii) Double groups with folding and vertical group I.
- (iv) Strict 2-algebras over the 2-theory of categories with everything invertible and one object, with underlying I.

In the case of a trivial I, this says 2-groups are equivalent to crossed modules. We see that the Theorem of Brown and Spencer mentioned above is a special case.

Thus we have a comparison of crossed modules under groups with one-object strict 2-algebras over the 2-theory of categories with everything invertible.

The purpose of this work was to build a bridge from (pseudo) algebras over the 2-theory of categories to traditional categorical concepts. The strict 2-algebras are 2-equivalent to double categories with folding.

This is somewhat a surprise: these strict 2-algebras are neither enriched 2-categories, nor internal categories in Cat, but instead an intermediate notion. Thus, categorification via pseudo algebras over 2-theories is different than enrichment and internalization.

Conclusion

