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1. INTRODUCTION

In this talk I will introduce the notions of moduli space and Jacobians and
briefly describe a current research topic. The primary example is the moduli space
of elliptic curves. The moduli space of higher dimensional principally polarized
complex tori is introduced by way of analogy. The process of taking the Jacobian of
a compact Riemann surface gives a functor from the category of compact Riemann
surfaces to a discrete category made up of moduli spaces of tori. The research
question Igor Kriz and I are investigating is: in what sense can this functor be
extended on rigged surfaces to form a morphism of stacks of pseudo commutative
monoids with cancellation? Since this is an expository talk, the treatment will be
brief. Proofs will only be sketched, or omitted entirely.

2. MODULI SPACES

When we say the moduli space of something, we generally mean the collection
of isomorphism classes of those things. One useful aspect of moduli space is that
it usually has additional structure, e.g. it is a variety, a manifold, or a topological
space. Here are some examples of decreasing triviality.

Example 1. The moduli space of groups of order 2 is the singleton, because any
two groups of order 2 are isomorphic. The moduli space of groups of order three
is also the singleton. The moduli space of groups of prime order is in bijective
correspondence with the prime numbers, since any two groups of prime order p;
and po are isomorphic if and only if p; = ps.

Example 2. The moduli space of topological spaces with 2 elements has cardinality
3. The classes are represented by the discrete topology, the topology with 2 open
sets, and the topology with three open sets.

Example 3. The moduli space of finite dimensional complex vector spaces is

N U {0}, since two finite dimensional complex vector spaces are isomorphic if and
only if they have the same dimension. Note that this moduli space has an algebraic
structure, whereas the previous examples were not so good because they didn’t
have any additional structure.

Example 4. The moduli space of closed compact connected orientable 2 dimen-
sional real manifolds is N U {0} because such surfaces are entirely classified by the
genus, i.e. by their number of holes.
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3. ErripTic CURVES

Elliptic curves are curves that are important in algebraic geometry, number the-
ory, and algebraic topology. See [8] for more on elliptic curves. They are important
in algebraic topology because they relate to formal group laws and elliptic coho-
mology.

Definition 3.1. An elliptic curve is a subset of CP? consisting of [0 : 1 : 1] and all
points [z : y : 1] satisfying the Weierstrass equation

2 3 2
y° + arxy + azy = x° + asx” + agx + ag
for some aq, as,as,aq,ag € C.

Most authors intentionally leave out as because it makes something else easier.
Elliptic curves can also be described as 1 dimensional complex tori, and that is
what we will in fact use. A 1-dimensional complex torus is just the complex plane
modded out by a rank 2 lattice. Here a rank 2 lattice is the Z-span of two R-linearly
independent complex numbers. In fact, when we say elliptic curve in this talk, we
will usually think of the complex tori. The identification is in the following well
known theorem.

Theorem 3.1. The set of isomorphism classes of elliptic curves is in bijective
correspondence with the set of isomorphism classes of genus 1 surfaces with complex
structure. Moreover, these have the form C/A for lattices A C C.

Proof: ~ We show how to get an elliptic curve from a complex torus. The
Weierstrass p-function associated to the lattice A is

red= gt 3 (Gm )

0#weA
It gives us an embedding
C/A — CP?
1
[#] = [p(z; 4) = 5o (a3 A) = 1].
L]
Example 5. The tori
C C
and

<1ai>Z <]_’e7"75/3>Z
are elliptic curves. Note that topologically they are the same, but as elliptic curves
they are different. The right lattice is the honeycomb lattice.

4. THE MobDuULI SPACE OF ELLIPTIC CURVES

Sometimes people refer to moduli space as parameter space. We’ll see why in
the case of the moduli space of elliptic curves. In this part of the talk we briefly
describe isomorphim classes of elliptic curves in terms of a parameter 7 in the upper
half plane H := {z € C: Im z > 0}.

For the purposes of moduli space, it suffices to speak of lattices with basis vectors
1 and 7 with 7 € H because any lattice in C can be rotated and dilated to get
one of this form. The rotated and dilated lattice gives rise to an elliptic curve
isomorphic to the elliptic curve obtained from the original lattice. More precisely,
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homothetic lattices A and A’ give rise to isomorphic elliptic curves C/A and C/A’,
where homothetic means that there exists a nonzero complex number z such that
A=zN.

However, it is still possible for elliptic curves

C C

Loz T,
to be isomorphic although 7 and 7/ are distinct. For example, (1,7) = (1,741) give
rise to equal elliptic curves although 7 # 7+ 1. Note also that (1,7) and (1,—1/7)
give rise to isomorphic elliptic curves because of the homothety z = —1/7. It
turns out that we get isomorphic elliptic curves only when 7 an 7’ are related by
repeated applications of these two operations. The group of transformations H — H
generated by

71+ 1land 74— —1/7
consists of all transformations of the form
b
(cL:—'_d where det( (CL Z

which is isomorphic to the group PSL(2,Z) = SL(2,Z)/{+1,—1}.

> =1and a,b,c,d € Z,

Theorem 4.1. The moduli space M of elliptic curves is
PSL(2,Z)\H = SL(2,Z)\H.
Proof:  Consider the map ¢ : H — M defined by

C
T +— isomorphism class of ———.
<1’ T>Z
By the above discussion, we have ¢(7) = ¢(7’) if and only if 7 and 7/ belong to the
same PSL(2,Z)-orbit. This induces a bijection between PSL(2,Z)\H and M. [

One can draw a nice picture of this, as I did in the talk. The picture shows that
this moduli space is itself a Riemann surface. This is the additional structure I
mentioned in the general discussion of moduli spaces. I should also mention that
elliptic curves are totally classified by their j-invariant, which gives us a bijection
between M and C. We see that this moduli space is topologically the complex
plane. See [1].

5. THE MODULI SPACE OF HIGHER DIMENSIONAL COMPLEX TORI

Although it is not obvious, the appropriate generalization of the upper half
plane H is the Siegel Upper Half Space H of complex symmetric g x g matrices €
with positive definite imaginary part. A g-dimensional complex torus is given by
C9/(7Z9 + QZ9). Such tori appeared in the 19th century as Jacobian varieties of
compact Riemann surfaces. The moduli space of g-dimensional principally polarized
complex tori is
SP(QQ, Z)\Hg
A B _q
c D ) 0 := (AQ + B)(C 4+ D)~ !. Note that
SL(2,7Z) = Sp(2,Z) so that this coincides with the moduli space of elliptic curves
when g = 1. Mumford has described this moduli space, how it relates to Jacobians,
and much, much more in [6].

where Sp(2¢g,Z) acts on H, by (
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6. JACOBIANS OF COMPACT RIEMANN SURFACES

There is a map Jac from compact Riemann surfaces to varieties defined as fol-
lows. Let X be a genus g compact Riemann surface and Q! (X) its vector space of
global holomorphic 1-forms. There is a biadditive map

H(X;Z) x QY(X) — C

(d,w) = [ w
[c]
given by integration. Any linear map Q!(X) — C that can be expressed as w —
f[c] w is called a period. The periods form a lattice A C Q(X)* = CY. The Jacobian
of X is
Jac(X) = QYX)*/A

and this can be expressed as C9/(Z9 + QZ9) after choosing a basis appropriately.
This is described thoroughly in [5] and [6].

Example 6. The Jacobian of CP! is {0} because Q'(CP?!) = 0.

Example 7. The Jacobian of an elliptic curve C' is isomorphic to the elliptic curve

C.

7. JACOBIANS OF RIGGED SURFACES

If we consider the category C. of closed compact Riemann surfaces with mor-
phisms given by holomorphic diffeomorphisms and we view the moduli space as a
discrete category, then Jac is a functor

Ca — | (Sp(29,Z)\H,).

920

Can this functor be extended to the larger category of rigged surfaces?

A rigged surface is a compact 2-dimensional manifold with complex structure
equipped with analytic parametrizations of the boundary components. Examples
of rigged surfaces are the Riemann sphere, any Riemann surface, and the unit disk.
Morphisms of rigged surfaces are holomorphic diffeomorphisms which preserve the
boundary parametrizations. Let C denote the category of rigged surfaces. It has a
pseudo algebraic structure of gluing and disjoint union which makes it into a pseudo
commutative monoid with cancellation as in [2],[3],[4]. Igor Kriz and I are currently
working to expand the moduli category into one which admits gluing and disjoint
union in such a way that the Jacobian functor extends to a morphism of pseudo
commutative monoids. Lattice conformal field theories should factor through this
generalized Jacobian functor. See [3] and [7] for the definition of conformal field
theory.
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