Mathematics and Music 2006 REU Lecture 3 Problems Tom Fiore

1. A group action is *transitive* if for any $x, y \in X$ there exists a $g \in G$ such that gx = y, in other words there is only one orbit and that orbit is all of X. A group action is *simple* or *free* if

$$gx = g'x$$
 for some $x \in X \Rightarrow g = g'$.

A group action is *simply transitive* if it is both transitive and simple. Show that any group acts simply transitively on itself via left multiplication.

2. If a group G acts on a set X, then the stabilizer of $x \in X$ is the group

$$G_x := \{ g \in G | gx = x \}.$$

The Orbit-Stabilizer Theorem says the following.

Theorem 0.1. If a finite group G acts on a finite set X, then

$$|G|/|G_x| = |orbit \ of \ x|$$

where $|\cdot|$ means "number of elements."

The finiteness assumption can be left off by changing the statement into a bijection between cosets and equivalence classes, but we only need the finite case for now. Use the Orbit-Stabilizer Theorem to show that if a finite group G acts simply transitively on a finite set X, then |X| = |G|. How does this apply to our analysis of Hindemith, $Ludus\ Tonalis$, Fugue in G? Does the converse hold? More specifically, does |X| = |G| imply that G acts simply transitively?

3. Recall that the musical space S in Hindemith, $Ludus\ Tonalis$, Fugue in G consists of the transposed and inverted forms of $\langle G,C,D\rangle=\langle 7,0,2\rangle$. The transformation $J:S\to S$ is defined by:

J(x) := that form of opposite type as x that has the same first two pitch classes but in the opposite order.

Use the table of S below to calculate

$$J\langle 3, 8, 10 \rangle$$

$$J\langle 5, 10, 0 \rangle$$

$$J\langle 9, 2, 4 \rangle$$

$$J\langle 8, 3, 1 \rangle$$

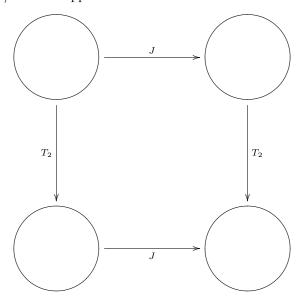
$$J\langle 10, 5, 3 \rangle$$

Compare the answers for the first three with the answers for the second three. Do you see a pattern? Use this pattern to figure out $J \circ J(x)$.

 $J\langle 2, 9, 7\rangle$.

Transposed Forms	Inverted Forms
$\langle 7, 0, 2 \rangle$	$\langle 5, 0, 10 \rangle$
$\langle 8, 1, 3 \rangle$	$\langle 6, 1, 11 \rangle$
$\langle 9, 2, 4 \rangle$	$\langle 7, 2, 0 \rangle$
$\langle 10, 3, 5 \rangle$	$\langle 8, 3, 1 \rangle$
$\langle 11, 4, 6 \rangle$	$\langle 9, 4, 2 \rangle$
$\langle 0, 5, 7 \rangle$	$\langle 10, 5, 3 \rangle$
$\langle 1, 6, 8 \rangle$	$\langle 11, 6, 4 \rangle$
$\langle 2, 7, 9 \rangle$	$\langle 0, 7, 5 \rangle$
$\langle 3, 8, 10 \rangle$	$\langle 1, 8, 6 \rangle$
$\langle 4, 9, 11 \rangle$	$\langle 2, 9, 7 \rangle$
$\langle 5, 10, 0 \rangle$	$\langle 3, 10, 8 \rangle$
$\langle 6, 11, 1 \rangle$	$\langle 4, 11, 9 \rangle$

4. Insert $\langle 0,5,7\rangle$ into the upper left circle of the network



and verify that the diagram commutes. This diagram can be found in measures 62 and 64 of Hindemith, $Ludus\ Tonalis$, Fugue in G.