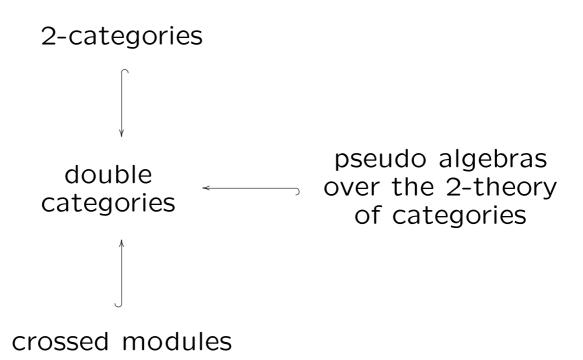
Double Categories and Pseudo Algebras

Tom Fiore

www.math.uchicago.edu/~fiore/

Overview



Chronology

1942-1945 Eilenberg-Mac Lane: category theory

1946, 1950 Whitehead-Mac Lane: crossed modules, homotopy 2-types

1963 Ehresmann: double categories

Lawvere: Theories

1970's R. Brown: 2-groups, crossed modules, Van Kampen Theorems

1988 Segal Bourbaki talk: a CFT "is" a cocycle for elliptic cohomology

1991 Mac Lane: coherence in CFT

2002-2005 Fiore, Hu, Kriz: pseudo algebras over theories and 2-theories as a rigorous foundation of CFT

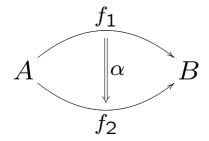
2-Categories

Definition 1 A 2-category C is a category enriched in categories, i.e.

- a set of objects $Obj \mathbf{C}$
- for each object A and B a category $Mor_{\mathbf{C}}(A, B)$
- composition functors $Mor_{\mathbf{C}}(B,C) \times Mor_{\mathbf{C}}(A,B) \xrightarrow{\circ} Mor_{\mathbf{C}}(A,C)$
- identities $1_A \in Mor_{\mathbf{C}}(A, A)$

which satisfy the usual axioms for a category.

Examples



Example 1 Any category is a 2-category with discrete morphism categories.

Example 2 Topological spaces, continuous maps, homotopy classes of homotopies.

Example 3 Categories, functors, and natural transformations form the 2-category Cat.

Example 4 Rings, bimodules, bimodule maps form a bicategory.

Double Categories

Definition 2 (Ehresmann 1963) A double category \mathbb{D} is an internal category in Cat.

Definition 3 A double category \mathbb{D} consists of a set of objects,

a set of horizontal morphisms,

a set of vertical morphisms, and

a class of squares with source and target as follows

and compositions and units that satisfy axioms.

Compositions and Units for Morphisms in a Double Category

Horizontal:

$$A \xrightarrow{f_1} B \xrightarrow{f_2} C = \begin{bmatrix} f_1 & f_2 \end{bmatrix} = f_2 \circ f_1$$
$$A \xrightarrow{f_A} A \xrightarrow{f_1} B = f_1 = A \xrightarrow{f_1} B \xrightarrow{f_B} B$$

Vertical:

$$\begin{array}{c}
A \\
j_1 \\
B \\
j_2
\end{array} = \begin{bmatrix} j_1 \\ j_2 \end{bmatrix} = j_2 \circ j_1$$

$$\begin{array}{cccc}
A & & & & A \\
\downarrow 1_A^v & & A & & \downarrow j_1 \\
A & = & \downarrow j_1 & = & B \\
\downarrow j_1 & & B & & \downarrow 1_B^v \\
B & & & B
\end{array}$$

Compositions for Squares in a Double Category

Horizontal:

Vertical:

$$\begin{array}{cccc}
A \xrightarrow{f} & B & & & & & \\
j_1 & \alpha & k_1 & & & A \xrightarrow{f} & B \\
C \xrightarrow{g} & D & = & \begin{bmatrix} j_1 \\ j_2 \end{bmatrix} & \begin{bmatrix} \alpha \\ \beta \end{bmatrix} & \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \\
j_2 & \beta & k_2 & E \xrightarrow{h} F
\end{array}$$

Units for Squares in a Double Category

Horizontal:

$$A \xrightarrow{1_A^h} A \xrightarrow{f} B \qquad A \xrightarrow{f} B$$

$$j \downarrow i_j^h j \qquad \alpha \qquad k \qquad = \qquad j \downarrow \qquad \alpha \qquad k$$

$$C \xrightarrow{1_C^h} C \xrightarrow{g} D \qquad C \xrightarrow{g} D$$

$$A \xrightarrow{f} B \xrightarrow{1_B^h} B$$

$$= \qquad j \downarrow \qquad \alpha \qquad k \qquad i_h^h \qquad k$$

$$C \xrightarrow{g} D \xrightarrow{1_D^h} D$$

Vertical:

Axioms for a Double Category

All compositions are associative and unital (as above) and

$$\begin{bmatrix} i_{j_1}^h \\ i_{j_2}^h \end{bmatrix} = i_{\begin{bmatrix} j_1 \\ j_2 \end{bmatrix}}^h$$

$$\begin{bmatrix} i_{f_1}^v & i_{f_2}^v \end{bmatrix} = i_{[f_1 f_2]}^v.$$

Interchange Law:

If
$$\begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix}$$
, then $\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$ and

we write
$$\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$
 .

Let I be a 1-category.

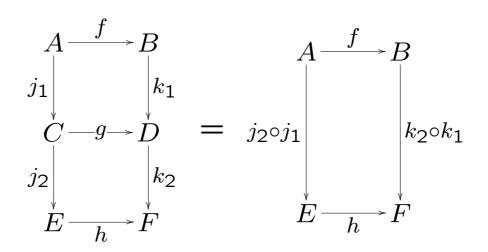
 $\Box I :=$ double category of commutative squares in I

 $Obj \square I := Obj I$

 $Hor \square I := Mor I$

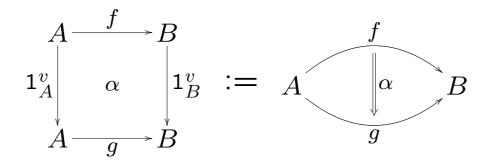
 $Ver \square I := Mor I$

 $Sq \square I :=$ commutative squares in I

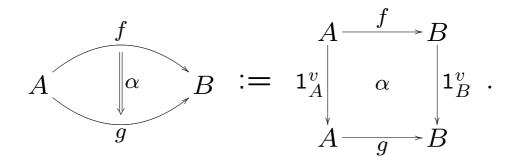


 $\Box I :=$ double category of not necessarily commutative squares in I

Every 2-category \mathbf{C} is a double category with trivial vertical morphisms.



Definition 4 The horizontal 2-category $H\mathbb{D}$ of a double category \mathbb{D} has objects $Obj\mathbb{D}$, morphisms $Hor\mathbb{D}$, and 2-cells



Let C be a 2-category.

 $\mathbb{Q}C := \text{Ehresmann's double category of } quintets \text{ in } C \text{ (1963)}$

$$Obj \mathbb{Q}\mathbf{C} := Obj \mathbf{C}$$

$$Hor \mathbb{Q}C := Mor C$$

$$Ver \mathbb{Q}\mathbf{C} := Mor \mathbf{C}$$

$$Sq\mathbb{Q}\mathbf{C} := \left\{ \begin{array}{c|c} A & \xrightarrow{f} & B \\ j & \alpha & k \\ C & \xrightarrow{g} D \end{array} \right. A \xrightarrow{k \circ f} D \left. \right\}$$

Theorem 1 (Grandis-Paré 2004) The functor $\mathbb{Q}: 2\text{-}Cat \longrightarrow Dbl$ admits a right adjoint.

 \mathbb{R} ng:= pseudo double category or rings, bimodules, and equivariant maps

 $Obj \mathbb{R}$ ng := rings with identity

 $Hor\mathbb{R}$ ng := bimodules

 $Ver \mathbb{R}$ ng := homomorphisms of rings

 $Sq\mathbb{R}$ ng :=

$$\left\{ \begin{array}{c|c} R \xrightarrow{M} S \\ j & \alpha & k \\ T \xrightarrow{N} U \end{array} \right. \left. \begin{array}{c} \alpha: M \longrightarrow N \text{ group homomorphism} \\ \alpha(smr) = k(s)\alpha(m)j(r) \end{array} \right.$$

Let C be a topological category, *i.e.* $Obj\,C$ and $Mor\,C$ are topological spaces.

 $\mathbb{P}'C$:= double category of Moore paths on C.

 $Obj \mathbb{P}'C := Obj C$

 $Hor \mathbb{P}'C := Mor C$

 $Ver \mathbb{P}'C := P'(Obj C) = Moore paths in Obj C$

 $Sq\mathbb{P}'C := P'(MorC) = Moore paths in MorC$

$$P'X := \{(w,s) : s \ge 0, w : [0,s] \longrightarrow X\}$$

A worldsheet is a real, compact, not necessarily connected, two dimensional, smooth manifold with complex structure and real analytically parametrized boundary components.

 \mathbb{W} := pseudo double category of worldsheets

 $Obj \mathbb{W} := finite sets$

 $Hor \mathbb{W}(A,B) :=$ worldsheets with inbound components labelled by A and outbound components by B

 $Ver \mathbb{W} :=$ bijections of finite sets

 $Sq \mathbb{W} :=$

$$\left\{ \begin{array}{c|c} A \xrightarrow{x} B & \alpha : x \longrightarrow y \text{ holomorphic diffeo.} \\ j & \alpha & k & \alpha \text{ compatible with } j \text{ and } k \\ C \xrightarrow{y} D & \alpha \text{ preserves boundary params.} \end{array} \right\}$$

Folding Structures

We introduce folding structures to compare algebras over the 2-theory of categories with double categories.

Definition 5 A holonomy on a double category \mathbb{D} is a 2-functor

$$(\mathbf{V}\mathbb{D})_0 \longrightarrow \mathbf{H}\mathbb{D}$$

$$A \longmapsto \overline{A} = A$$

$$\downarrow j \longmapsto A \stackrel{\overline{j}}{\longrightarrow} B$$

$$B$$

Example 5 For a topological category C, a holonomy

$$(\mathbf{V}\mathbb{P}'C)_0 \longrightarrow \mathbf{H}\mathbb{P}'C$$

assigns to a path of objects a morphism from the initial point to the terminal point, like in differential geometry.

Folding Structures

Definition 6 A folding structure on a double category \mathbb{D} consists of a holonomy $j \mapsto \overline{j}$ and bijections

compatible with compositions and units.

A folding structure *horizontalizes* a double category.

Let I be a 1-category.

- $\Box I =$ double category of commutative squares in I
- $\odot I =$ double category of not necessarily commutative squares in I

Then $\Box I$ and $\odot I$ each admit a unique folding structure.

Let C be a 2-category. Then $\mathbb{Q}C$ admits a folding structure by definition.

 \mathbb{R} ng:= pseudo double category or rings, bimodules, and equivariant maps

 $Obj \mathbb{R}$ ng := rings with identity

 $Hor \mathbb{R}ng := bimodules$

 $Ver\mathbb{R}$ ng := homomorphisms of rings

 $Sq\mathbb{R}$ ng :=

$$\left\{\begin{array}{c|c} R \xrightarrow{M} S \\ j & \alpha & k \\ T \xrightarrow{N} U \end{array} \middle| \begin{array}{c} \alpha: M \longrightarrow N \text{ group homomorphism} \\ \alpha(smr) = k(s)\alpha(m)j(r) \end{array}\right.$$

Holonomy:

$$\overline{j} := T_j = \text{ the } (T,R) \text{-module } T$$

Folding:

$$\Lambda(\alpha): U_k \otimes_S M \Longrightarrow N \otimes_T T_j$$

$$u \otimes m \longmapsto (u \cdot \alpha(m)) \otimes 1_T$$

 \mathbb{W} := pseudo double category of worldsheets

 $Obj \mathbb{W} := finite sets$

 $Hor \mathbb{W}(A,B) :=$ worldsheets with inbound components labelled by A and outbound components by B

 $Ver \mathbb{W} :=$ bijections of finite sets $Sq \mathbb{W} :=$

$$\left\{ \begin{array}{c|c} A \xrightarrow{x} B & \alpha : x \longrightarrow y \text{ holomorphic diffeo.} \\ j & \alpha & k & \alpha \text{ compatible with } j \text{ and } k \\ C \xrightarrow{y} D & \alpha \text{ preserves boundary params.} \end{array} \right\}$$

Holonomy:

bijection
$$\longrightarrow$$
 labelled union of infinitely thin annuli

Folding:

relabel \boldsymbol{x} and \boldsymbol{y}

Comparison Theorems

Observation 2 (Brown-Mosa 1999, F. 2006) The notions of folding structure and connection pair are equivalent.

Theorem 3 (F. 2006) The 2-category of strict 2-algebras over the 2-theory of categories is 2-equivalent to the 2-category of double categories with folding structures and invertible vertical morphisms.

The pseudo version of the theorem also holds.

Strict 2-Algebras

Definition 7 A strict 2-algebra over the 2-theory of of categories is a groupoid I and a strict 2-functor $X: I^2 \longrightarrow Cat$ with strictly 2-natural functors

$$X_{B,C} \times X_{A,B} \xrightarrow{\circ} X_{A,C}$$

$$\{*\}$$
 $\xrightarrow{1_B} X_{B,B}$

for all $A, B, C \in I$ which satisfy axioms like those of a category.

Towards Strict 2-Algebras and Crossed Modules

Consider one object cases.

```
groupoids \subseteq 2-groupoids \subseteq double groupoids groups \subseteq 2-groups \subseteq double groups
```

Theorem 4 (Verdier, Brown-Spencer 1976,...) 2-groups are equivalent to crossed modules.

Theorem 5 (Brown-Spencer 1976) Edge symmetric double groups with folding structure with trivial holonomy are equivalent to crossed modules.

Question: What is a one object strict 2-algebra over the 2-theory of categories with everything iso?

Crossed Modules

Definition 8 A crossed module is a group homomorphism $\partial: H \longrightarrow G$ with a left action

$$G \times H \longrightarrow H$$

$$(g,\alpha)\mapsto {}^g\alpha$$

by automorphisms such that:

1.
$$\partial(g\alpha) = g\partial(\alpha)g^{-1}$$
 for all $\alpha \in H$ and $g \in G$

2.
$$\partial(\alpha)\alpha_1 = \alpha\alpha_1\alpha^{-1}$$
 for all $\alpha, \alpha_1 \in H$.

Example 6 $H \triangleleft G$ is a crossed module

Crossed Modules

Example 7 Let (X, A, *) be a based pair of spaces. Then

$$\partial : \pi_2(X, A, *) \longrightarrow \pi_1(A, *)$$

is a crossed module.

Theorem 6 (Mac Lane-Whitehead 1950) Crossed modules model homotopy 2-types via this example.

Crossed Modules with Group Action

Definition 9 Let $\partial: H \rightarrow G$ be a crossed module and I a group. An action of I on the crossed module $\partial: H \rightarrow G$ consists of

- a left action of I on H by automorphisms written $(j, \alpha) \mapsto {}^{j}\alpha$
- a left action of I on G as a set written $(j,g)\mapsto jg$
- a right action of I on G as a set written $(g,j)\mapsto gj$

Crossed Modules with Group Action

These actions satisfy the following axioms for all $j, k \in I, \alpha \in H, g, g_1, g_2 \in G$.

$$1. (jg)k = j(gk)$$

2.
$$(jg_1)g_2 = j(g_1g_2)$$

3.
$$(g_1g_2)k = g_1(g_2k)$$

4.
$$(g_1j)g_2 = g_1(jg_2)$$

5.
$$j1_G = 1_G j$$

6.
$$(gk)\alpha = g(k\alpha)$$

7.
$$(jg)_{\alpha} = j(g_{\alpha})$$

8.
$$\partial (j\alpha) = j\partial(\alpha)j^{-1}$$

Strict 2-Algebras and Crossed Modules

Theorem 7 (F. 2006) One object strict 2-algebras over the 2-theory of categories with everything iso are equivalent to crossed modules with a group action.

In the case of a trivial group and trivial I, this says 2-groups are equivalent to crossed modules.

Conclusion

