PSYC 363
Cognitive Psychology
Arlo Clark-Foos
Part II - Attention
MUSINGS ON ATTENTION

- In a busy world filled with sounds, how do we select what to listen to?
- How do we find meaningful information within a complex scene?
- What role does attention play in putting together visual patterns as recognizable objects?
- How do we coordinate parallel activities like driving a car and holding a conversation?
What Is Attention?

- Tradeoff: Focusing vs. Monitoring

- What happens to the information we attend to?
- Better yet, what happens to the information we do not attend to?

William James: “Everyone knows what attention is”
Theories Of Attention

- Bottleneck Theories
 - Sensory limitations
 - Broadbent’s early filter model
Broadbent’s Filter Model (1958)

- Input channels
- Senses e.g. eye, ear
- Short Term Memory Store
- FILTER
 - Selection on the basis of physical characteristics only.
- Selected input for attention.
AUDITORY ATTENTION
Dichotic Listening Task

Ignored inputs:
The horses galloped across the field...

Attended inputs:
President Lincoln often read by the light of the fire...

Shadowing:
President Lincoln often read by the light of the fire...
Early Selection Theories of Attention

- Cherry (1953)
 - Shadow male voice, right ear
 - Left ear: Male, Female, Reversed Speech, Tone
 - What was remembered? What was not?

Figure 3.1: A typical shadowing task. Different messages are presented to the left and right ears, and the subject attempts to “shadow” one ear. (From Lindsay & Norman, 1977.)
Control: Same numbers in each ear (93% acc.)
Experimental: Different numbers in each ear (65% acc.)
 ** Always reported all of one ear, then all of the other.
 Report in Order: ½ sec between pairs (20% acc.)
 2 sec between pairs (50% acc.)
Expansion Of Broadbent’s Model

- Switching the flap
- Mixed vs. Same Modalities
- Mowbray
 - Applied this idea to other material: stories
 - Recall both
Late Selection Theories Of Attention

- Moray
 - Shadowing experiment
 - LEFT: Message
 - RIGHT: Six words, repeated
 - Does some information get through?
 - Your name?

- Cocktail Party Phenomenon (Yes Dear effect)
Dichotic Listening

Gray & Wedderburn (1959)

- Instructed to shadow meaningful message

- dogs six fleas
- eight scratch two
Theories Of Attention

- Instructions: Shadow one ear only.

- LEFT CHANNEL (EAR):
 IN THE PICNIC BASKET
 SHE HAD PEANUT BUTTER
 BOOK LEAF SAMPLE ALWAYS

- RIGHT CHANNEL (EAR):
 CAT LARGE DAY APPLE
 FRIEND POOL SANDWICHES
 AND CHOCOLATE BROWNIES
Theories Of Attention

- Treisman’s Attenuation Model
 - The unattended channel
 - What gets through?
 - Neural Evidence for Attenuation
 - 20-50 ms post-stimulus activity → presemantic (Woldorff et al., 1993)
 - PET studies (Zatorre, Mondor, & Evans, 1999)
Late-selection Theories

- Bottom-Up vs. Top-Down processing
- STM and Working Memory

MacKay
- “They were throwing stones at the bank”
- Context Word (unshadowed): river or money
- Role of Short Term Memory?
Applications

- Cherry and Kruger (1983)
 - Children with learning disabilities, ages 7-9
 - LD worse than non-LD
 - Schizophrenia
 - Unattended information?
Unified Theories Of Attention
Kahneman’s Capacity Model

What is really important?
Capacity Model

- Different and Multiple Tasks
- Kahneman’s example
- Information in the Unattended Channel?
Automatic / Controlled Processes

- Transition between the two types

- Examples

- Reading
 - Stroop Task
Stroop Task

![Stroop Task Diagram]
Stroop Task
Stroop Task

green...er no, blue?

orange

green

blue

this is easy!
Automatic / Controlled Processes

- Moray’s own performance at shadowing
- Implications
- Skill acquisition
Automatic / Controlled Processes

- Ulrich Neisser (1963)
 - Proofreaders
 - Single letters vs.
 - Groups of letters

Implications:
- Serial vs. Parallel Search
Automatic / Controlled Processes

- Hirst et al. (1980)
 + Secretary study
 - Learning to Read and take Dictation simultaneously

Figure 1. Average reading speed for blocks of five sessions in the training phase of Experiment 1.
Neely (1977)

![Graph showing response time (MSEC) vs. interval between prime and target (MSEC).](image)

- **Automatic/Fast**
- **Strategic/Controlled/Slow**

NOTE: Neely used ISI of 250, 400, and 700 MSEC

- **Unexpected, but related (building-door)**
- **Expected, but unrelated (building-hand)**
Automatic / Controlled Processes

What are the pros?
- Rapid Activation/Response
- Requires little to no attention to complete

What are the cons?
- Automatic response not always appropriate (Stroop)
- Slips of action
 * Reason’s diary study (Reason, 1979)
Reason’s Slips of Action

- 5 categories of slips
 - 1. Storage failures
 - 2. Test failures
 - 3. Subroutine failures
 - 4. Discrimination failures
 - 5. Program assembly failures

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Classification of Slips Based on Their Presumed Sources</td>
</tr>
<tr>
<td>Slips that result from errors in the formation of the intention</td>
</tr>
<tr>
<td>Errors that are not classified as slips: errors in the determination of goals, in decision making and problem solving, and other related aspects of the determination of an intention</td>
</tr>
<tr>
<td>Node errors: erroneous classification of the situation</td>
</tr>
<tr>
<td>Description errors: ambiguous or incomplete specification of the intention</td>
</tr>
<tr>
<td>Slips that result from faulty activation of schemas</td>
</tr>
<tr>
<td>Unintentional activation: when schemas not part of a current action sequence become activated for extraneous reasons, then become triggered and lead to slips</td>
</tr>
<tr>
<td>Capture errors: when a sequence being performed is similar to another more frequent or better learned sequence, the latter may capture control</td>
</tr>
<tr>
<td>Data-driven activation: external events cause activation of schemas</td>
</tr>
<tr>
<td>Associative activation: currently active schemas activate others with which they are associated</td>
</tr>
<tr>
<td>Loss of activation: when schemas that have been activated lose activation, thereby losing effectiveness to control behavior</td>
</tr>
<tr>
<td>Forgetting an intention (but continuing with the action sequence)</td>
</tr>
<tr>
<td>Misordering the components of an action sequence</td>
</tr>
<tr>
<td>Skipping steps in an action sequence</td>
</tr>
<tr>
<td>Repeating steps in an action sequence</td>
</tr>
<tr>
<td>Slips that result from faulty triggering of active schemas</td>
</tr>
<tr>
<td>False triggering: a properly activated schema is triggered at an inappropriate time</td>
</tr>
<tr>
<td>Spoilerisms: reversal of event components</td>
</tr>
<tr>
<td>Blends: combinations of components from two competing schemas</td>
</tr>
<tr>
<td>Thoughts leading to actions: triggering of schemas meant only to be thought, not to govern action</td>
</tr>
<tr>
<td>Premature triggering</td>
</tr>
<tr>
<td>Failure to trigger: when an active schema never gets invoked because</td>
</tr>
<tr>
<td>The action was preempted by competing schemas</td>
</tr>
<tr>
<td>There was insufficient activation, either as a result of forgetting or because the initial level was too low</td>
</tr>
<tr>
<td>There was a failure of the trigger condition to match, either because the triggering conditions were badly specified or the match between occurring conditions and the required conditions was never sufficiently close</td>
</tr>
</tbody>
</table>
Automatic / Controlled Processes

- Two Modes of control
 - Open Loop vs. Closed Loop
 - Slips of Action

- Schemas & Automaticity?
Slips Of Action
Summary

- What is attention?
- Filter Theories of attention
- Capacity Theory of attention
- Automatic and Controlled Processes
- Pitfalls of Automaticity