UNDERSTANDING RESEARCH RESULTS: STATISTICAL INFERENCE

A FEW TERMS

SAMPLES AND POPULATIONS

- ✓ Inferential statistics are necessary because
 - The results of a given study are based on data obtained from a single sample of researcher participants <u>and</u>
 - \checkmark Data are not based on an entire population of scores
- $\checkmark\,$ Allows conclusions on the basis of sample data

INFERENTIAL STATISTICS

- ✓ Allow researchers to make inferences about the true differences in populations of scores based on a <u>sample</u> of data from that population
- ✓ Allows that the difference between sample means reflects <u>random error</u> rather than a real difference

NULL AND RESEARCH HYPOTHESES

✓ Null Hypothesis

 \checkmark H₀: Population Means are Equal

✓ Any differences between groups are due to chance alone

✓ Research Hypothesis

 \checkmark H₁: Population Means are Not Equal

 \checkmark Any differences between groups are due to the IV

✓ Statistical Significance: *Unlikely* to be due to chance alone

PROBABILITY AND SAMPLING DISTRIBUTIONS

✓ Probability: The Case of ESP

Are correct answers due to chance or due to something more?

THE T TEST

✓ t value is a ratio of two aspects of the data
 ✓ The difference between the group means and
 ✓ The variability within groups

EXAMPLE: THE T AND F TESTS

✓ Degrees of Freedom

The number of scores that are free to vary when making an estimate.

✓ One-Tailed vs. Two-Tailed Tests

✓Directional vs. Nondirectional Hypotheses?

\checkmark The *F* Test (analysis of variance)

Systematic variance / Between-Groups Variance

Error variance / Within-Groups Variance

ONE-TAILED VS. TWO-TAILED TESTS

What is a directional hypothesis?

Is a one-tailed test valid?

EXAMPLE: THE T AND F TESTS

- ✓ Calculating Effect Size (*r*, Cohen's *d*, η_p^2 , etc.)
- ✓ Confidence Intervals and Statistical Significance
- ✓ Statistical Significance

difference for a t test			
Effect size r	Power = .80	Power = .90	
.10	786	1052	
.20	200	266	
.30	88	116	
.40	52	68	
.50	28	36	

TABLE 13.2Total sample size needed to detect a significant
difference for a t test

Note: Effect sizes are correlations, based on two-tailed tests.

TYPE I AND TYPE II ERRORS

✓ Type I Errors

- Made when the null hypothesis is rejected but the null hypothesis is actually true
- Obtained when a large value of t or F is obtained <u>by chance</u>
 <u>alone</u>
- ✓ Type II Errors
 - Made when the null hypothesis is accepted although in the population the research hypothesis is true
 - ✓ Factors related to making a Type II error
 - ✓Significance (alpha) level
 - ✓ Sample size
 - ✓ Effect size

TYPE I AND TYPE II ERRORS

THE EVERYDAY CONTEXT OF TYPE I AND TYPE II ERRORS

SIGNIFICANCE LEVEL & STATISTICAL ERRORS

- ✓ Researchers traditionally have used either a .05 or a .01 significance level in the decision to reject the null hypothesis
- ✓ Agreement that the consequences of making a Type I error are more serious than those associated with a Type II error
 - ✓ Arlo's Two Cents: It depends on context.
 - ✓e.g., A new drug which may cure AIDS
- ✓ Interpreting nonsignificant results
 ✓ Absence of evidence is not evidence of absence.
 ✓ Nothing is ever proven or disproven!

CHOOSING A SAMPLE SIZE: POWER ANALYSIS

Power is a statistical test that determines optimal sample size based on probability of correctly rejecting the null hypothesis

Power = 1 - p(Type II error)

Effect sizes range and desired power

- Smaller effect sizes require larger samples to be significant
- Higher desired power demands a greater sample size
- Researchers usually use a power between .70 and .90

IMPORTANCE OF REPLICATIONS

Scientists attach little importance to results of a single study

- Detailed understanding requires numerous studies examining same variables
- Researchers look at the results of studies that replicate previous investigations

SIGNIFICANE OF PEARSON'S *R* CORRELATION COEFFICIENT

Is the correlation statistically significant?

- Ho: *r* = 0
- **-** H1: *r* ≠ 0

It is proper to conduct a t-test to compare the r-value with the null correlation of 0.00 ?

COMPUTER ANALYSIS OF DATA

✓ Software Programs include

✓ SPSS

✓ SAS

✓Minitab

✓Microsoft Excel

\checkmark Steps in analysis

✓Input data

✓ Rows represent cases or each participant's scores

✓ Columns represent a participant's score for a specific variable

✓Conduct analysis

✓Interpret output

SELECTING THE APPROPRIATE SIGNIFICANCE TEST

IV	DV	Statistical Test
Nominal Male-Female	Nominal Vegetarian – Yes / No	Chi Square
Nominal (2 Groups) Male-Female	Interval / Ratio Grade Point Average	<i>t</i> test
Nominal (3 groups) Study time (Low, Medium, High)	Interval / Ratio Test Score	One-way ANOVA
Interval / Ratio Optimism Score	Interval / Ratio Sick Days Last Year	Pearson's correlation

SELECTING THE APPROPRIATE SIGNIFICANCE TEST

- ✓ Multiple Independent Variables
- ✓ Nominal Scale Data ANOVA Factorial Design
- ✓ Ordinal Scale Data no appropriate test is available
- ✓Interval or Ratio Scale Data Multiple Regression

