ENVIRONMENTAL REGULARITY IMPROVES TIME-BASED PROSPECTIVE REMEMBERING

Arlo Clark-Foos, M.S.
Time-Based Prospective Memory
Temporal Uncertainty

Certain

Uncertain

(Zakay, 1992; Block & Zakay, 2006)
Experimental Design (Exp. 1)

Task Duration

Certain

Uncertain

Time (minutes)

PM Target (8:30 min.)
Data (Exp. 1)

Task Duration

<table>
<thead>
<tr>
<th></th>
<th>Certain</th>
<th>Uncertain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checks</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Total Clock Checks</td>
<td>6</td>
<td>24</td>
</tr>
</tbody>
</table>

N = 60
Experimental Design (Exp. 2)

Task Duration X Reminder Frequency

Certain Task
- Regular Reminder (30s)
- Random Reminder

Uncertain Task
- Regular Reminder (30s)
- Random Reminder

PM Target (8:30 min.)

Reminder (8:30 min.)
Data (Exp. 2)

Color Change

![Bar chart showing data for Color Change with two conditions: Regular Reminders and Random Reminders. The chart compares the total clock checks for certain and uncertain task certainty cases.]

N = 140
Experimental Design (Exp. 3)

Color Change

- Certain
- Uncertain

Time (minutes)

- 2:00 4:00 6:00 8:00

PM Target (8:30 min.)
Data (Exp. 3)

Task Duration x Reminder Frequency

- Certain: 6 checks, Total Clock Checks = 14
- Uncertain: 12 checks, Total Clock Checks = 16

N = 60
Discussion