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Abstract. We improve a phase retrieval approach that uses correlation-based measurements with
compactly supported measurement masks [30]. Our approach admits deterministic measurement
constructions together with a robust, fast recovery algorithm that consists of solving a system of
linear equations in a lifted space, followed by finding an eigenvector (e.g., via an inverse power
iteration). Theoretical reconstruction error guarantees from [30] are improved as a result for the
new and more robust reconstruction approach proposed herein. Numerical experiments demonstrate
robustness and computational efficiency that compete with other approaches on large problems.
Along the way, we show that this approach also trivially extends to phase retrieval problems based
on windowed Fourier measurements.

1. Introduction

Consider the problem of recovering a vector x0 ∈ Cd from measurements y ∈ RD with entries yj
given by

(1) yj = |〈aj ,x0〉|2 + ηj , j = 1, . . . , D.

Here the measurement vectors aj ∈ Cd are known and the scalars ηj ∈ R denote noise terms. This
problem is known as the phase retrieval problem (see, e.g., [46, 36]), as we may think of the | · |2 in
(1) as erasing the phases of the measurements 〈aj ,x0〉 in an otherwise linear system of equations.

The phase retrieval problem arises in many important signal acquisition schemes, including
crystallography and ptychography (e.g., [36], see Figure 1), diffraction imaging [23], and optics
[36, 46], among many others. Due to the breadth and importance of the applications, there has
been significant interest in developing efficient algorithms to solve this problem. Indeed, one of the
first algorithms proposed came in the early 1970’s with the work of Gerchberg and Saxton [23]. Since
then many variations of their method have been proposed (e.g, [21, 41, 43, 42, 8, 7, 20]) and used
widely in practice. On the other hand – until recently – there have not been theoretical guarantees
concerning the conditions under which these algorithms recover the underlying signal and the extent
to which they can tolerate measurement error. Nevertheless, starting in 2006 a growing body of
work (e.g., [2, 4, 5, 10, 14, 19, 30, 33]) has emerged, proposing new methods with theoretical
performance guarantees under various assumptions on the signal x0 and the measurement vectors
aj . Unfortunately, the assumptions (especially on the measurement vectors) often do not correspond
to the setups used in practice. In particular, the mathematical analysis often requires that the
measurement vectors be random or generic (e.g., [4, 5, 14]) while in practice the measurement
vectors are a deterministic aspect of the imaging apparatuses employed. A main contribution
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of this paper is analyzing a construction that more closely matches practicable and deterministic
measurement schemes. We propose a two-stage algorithm for solving the phase retrieval problem in
this setting and we analyze our method, providing upper bounds on the associated reconstruction
error.

In short, we provide theoretical error guarantees for a numerically efficient reconstruction algo-
rithm in a measurement setting that closely resembles measurements used in practice.

1.1. Local Correlation Measurements. Consider the case where the vectors aj represent shifts
of compactly-supported vectors mj , j = 1, . . . ,K for some K ∈ N. Using the notation [n]k :=

{k, . . . , k + n − 1} ⊂ N, and defining [n] := [n]1 we take x0,mj ∈ Cd with supp(mj) ⊂ [δ] ⊂ [d]

for some δ ∈ N. We also denote the space of Hermitian matrices in Ck×k by Hk. Now we have
measurements of the form

(2) (y`)j = |〈x0, S
∗
`mj〉|2, (j, `) ∈ [K]× P,

where P ⊂ [d]0 is arbitrary and S` : Cd → Cd is the discrete circular shift operator, namely

(S`x0)j = (x0)`+j .

One can see that (2) represents the modulus squared of the correlation between x0 and locally
supported measurement vectors. Therefore, we refer to the entries of y as local correlation mea-
surements. Following [14, 30, 4], the problem may be lifted to a linear system on the space of Cd×d
matrices. In particular, we observe that

(y`)j = |〈S`x0,mj〉|2 = m∗j (S`x0)(S`x0)
∗mj

= 〈x0x
∗
0, S
∗
`mjm

∗
jS`〉,

where the inner product above is the Hilbert-Schmidt inner product. Restricting to the case
P = [d]0, for every matrix A ∈ span{S∗`mjm

∗
jS`}`,j we have Aij = 0 whenever |i− j| mod d ≥ δ.

Therefore, we introduce the family of operators Tk : Cd×d → Cd×d given by

Tk(A)ij =

{
Aij , |i− j| mod d < k

0, otherwise.

Note that Tδ is simply the orthogonal projection operator onto its range Tδ(Cd×d) ⊇ span{S∗`mjm
∗
jS`}`,j ;

therefore,

(3) (y`)j = 〈x0x
∗
0, S
∗
`mjm

∗
jS`〉 = 〈Tδ(x0x

∗
0), S

∗
`mjm

∗
jS`〉, (j, `) ∈ [K]× P.

For convenience, we set D := K|P | and define the map A : Cd×d → CD

(4) A(X) = [〈X,S∗`mjm
∗
jS`〉](`,j).

Sometimes, we consider A|Tδ(Cd×d), the restriction of A to the domain Tδ(Cd×d); indeed, if this

linear system is injective on Tδ(Cd×d), then we can readily solve for

(5) Tδ(x0x
∗
0) =: X0

using our measurements (y`)j = (A(x0x
∗
0))(`,j). In [30], deterministic masks mj were constructed

for which (3) was indeed invertible for certain choices of K and P . An additional construction is
given below in §2.

Improving on [30], we can further see that x0 can be deduced from X0 up to a global phase in
the noiseless case as follows: First, X0 immediately gives the magnitudes of the entries of x0 since
(X0)ii = |(x0)i|2. The only challenge remaining, therefore, is to find arg((x0)i) up to a global phase.

We proceed by defining x̃0 and X̃0 by

(x̃0)i = sgn((x0)i)
2



(X̃0)ij =

{
sgn((X0)ij), |i− j| mod d < δ

0, otherwise
,

where sgn : C→ C is the usual normalization mapping

sgn(z) =

{ z

|z|
, z 6= 0

1, otherwise
.

We emphasize that

(6) X̃0 =
X0

|X0|
=

Tδ(x0x
∗
0)

|Tδ(x0x∗0)|
and x̃0 =

x0

|x0|
,

where the divisions are taken component-wise. Indeed, in [45], it was shown that the phases of the

entries of x0 (up to a global phase) are given by the leading eigenvector of X̃0. Moreover, it was
shown that this leading eigenvector is unique. Lemma 2 of this paper improves in these results by

giving a lower bound on the gap between the top two eigenvalues of X̃0. This better understanding

of the spectrum of X̃0 is then leveraged to analyze the robustness of this eigenvector-based phase
retrieval method to measurement noise.

1.2. Contributions. In this paper, we analyze a phase retrieval algorithm (Algorithm 1) for esti-
mating a vector x0 from noisy localized measurements of the form

(7) (y`)j = |〈x0, S
∗
`mj〉|2 + nj`, (j, `) ∈ [2δ − 1]× [d]0.

This algorithm is composed of two main stages. First, we apply the inverse of the linear operator

A|Tδ(Cd×d) : Tδ(Cd×d)→ C(2δ−1)d

defined immediately after (4), to obtain a Hermitian estimate X of Tδ(x0x
∗
0) given by

(8) X =
(

(A|Tδ(Cd×d))
−1y

)
/2 +

(
(A|Tδ(Cd×d))

−1y
)∗
/2 ∈ Tδ(Cd×d).

In particular, our choice of mj as described in Section 2 ensures thatA|Tδ(Cd×d) is both invertible and

well conditioned. Next, once we have an approximation of Tδ(x0x
∗
0), we estimate the magnitudes

and phases of the entries of x0 separately.
For the magnitudes, we simply use the square-roots of the diagonal entries of X. For the phases,

we use the normalized eigenvector corresponding to the top eigenvalue of

(9) X̃ :=
X

|X|
,

where the operations are considered element-wise. The hope is that the leading eigenvector of X̃

will serve as a good approximation to the leading eigenvector of X̃0, which is seen in Section 3 (see
also [45]) to indeed be a scaled version of the phase vector x̃0 (up to a global phase ambiguity). The
entire method is summarized in Algorithm 1, and its associated recovery guarantees are presented
in Theorem 1, while its computational complexity is discussed after the theorem in §1.3. Here and
throughout the paper, e = 2.71828 . . . refers to the base of the natural logarithm and i refers to
the imaginary unit.

Theorem 1. Suppose δ > 2 and d ≥ 4δ. Let (x0)min := minj |(x0)j | be the smallest magnitude of

any entry in x0 ∈ Cd. Then, the estimate x produced in Algorithm 1 satisfies

min
θ∈[0,2π]

∥∥∥x0 − eiθx
∥∥∥
2
≤ C

(
‖x0‖∞
(x0)2min

)(
d

δ

)2

κ‖n‖2 + Cd
1
4

√
κ‖n‖2,

where κ > 0 is the condition number of the system (8) and C ∈ R+ is an absolute universal
constant.
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Algorithm 1 Fast Phase Retrieval from Local Correlation Measurements

Input: Measurements y ∈ RD as per (7)
Output: x ∈ Cd with x ≈ e−iθx0 for some θ ∈ [0, 2π]

1: Compute the Hermitian matrix X =
(

(A|Tδ(Cd×d))
−1y

)
/2 +

(
(A|Tδ(Cd×d))

−1y
)∗
/2 ∈ Tδ(Cd×d)

as an estimate of Tδ(x0x
∗
0)

2: Form the banded matrix of phases, X̃ ∈ Tδ(Cd×d), by normalizing the non-zero entries of X

3: Compute the top eigenvector u ∈ Cd of X̃ and set x̃ := sgn(u).
4: Set xj =

√
Xj,j · (x̃)j for all j ∈ [d] to form x ∈ Cd

Theorem 1, which deterministically depends on both the masks and the signal, provides im-
provements over the first deterministic theoretical robust recovery guarantees proven in [30] for a
wide class of non-vanishing signals. Momentarily consider, e.g., the class of “flat” vectors x0 ∈ Cd

for which both (i) (x0)min ≥ ‖x0‖2
2
√
d

, and (ii)
(
‖x0‖∞
(x0)2min

)
≤ C̃ for some absolute constant C̃ ∈ R+,

hold. The main deterministic result of [30] also applies to this class of vectors and states that an
algorithm exists which can achieve the following robust recovery guarantee.

Theorem 2 (See Theorem 5 in [30]). There exist fixed universal constants C,C ′ ∈ R+ such that

the following holds for all x0 ∈ Cd of the class mentioned above: Let ‖x0‖2 ≥ Cd
√

(δ − 1) ‖n‖2.

Then, the algorithm in [30], when provided with noisy measurements of x0 ∈ Cd (7) resulting from
the masks discussed in Example 1 of §2, will output a vector x ∈ Cd satisfying

min
θ∈[0,2π]

∥∥∥x0 − eiθx
∥∥∥
2
≤ C ′d

√
(δ − 1) ‖n‖2.

Comparing the error bounds provided by Theorems 1 and 2 for the class of flat vectors x0

mentioned above when using measurements resulting from the masks discussed in Example 1 of
§2,1 we can see that Theorem 1 makes the following improvements over Theorem 2:

• Theorem 1 improves on the error bound of Theorem 2 for arbitrary small-norm noise n
having ‖n‖2 = O

(
δ/d2

)
.

• Theorem 2’s error bound breaks down entirely for noise n with `2-norm on the order of

‖n‖2 = Θ
(
‖x0‖22
δd2

)
. Theorem 1’s error bound, on the other hand, still provides non-trivial

error guarantees for such noise levels as long as ‖x0‖2 = O (δ).2

In addition, Theorem 1 also applies to a more general set of masks and a larger class of signals
x0 than Theorem 2 does. And, perhaps most importantly, Algorithm 1 generally outperforms the
algorithm referred to by Theorem 2 numerically for all noise levels (see, e.g., Figures 2a and 6a in
§6). Theorem 1 provides theoretical error guarantees for this numerically improved method.

We note that the O
((

d
δ

)2)
-factor in the first term of the error bound provided by Theorem 1

is probably suboptimal, especially in practice. Indeed, Theorem 1 provides a worst-case error
guarantee that holds for any arbitrary (including worst-case/adversarial) perturbation n of the
measurements (7). However, while the quadratic dependence on d/δ is probably suboptimal, some
dependence on d/δ likely exists for worst-case additive-noise in our local measurement setting.
There is, e.g., numerical evidence that the empirical noise robustness of many phase retrieval

1Note that the condition number κ mentioned in Theorem 1 for the masks discussed in Example 1 of §2 is O(δ2).
See Theorem 3 below for a more exact statement. All asymptotic notation is with respect to d → ∞. Below δ is
always assumed to be independent of (and less than) d unless otherwise noted.

2This allows Theorem 1 to cover, e.g., the case of larger δ = Ω
(√

d
)

.
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methods deteriorates as d grows for local measurements whose support size δ is held fixed. We will
leave a rigorous theoretical investigation of the optimal scaling of such noise robustness guarantees

with d/δ to future work. For the time being we will simply note here that the O
((

d
δ

)2)
-factor is

mainly a product of the relatively small eigenvalue gap of the matrix X̃0 defined in (6) above. See
§3 below for more details.

1.3. The Runtime Complexity of Algorithm 1. Consider now the computational complexity
of Algorithm 1 (assuming, of course, that A|Tδ(Cd×d) is actually invertible). One can see that line 1

can always be done in at most O(d ·δ3 +δ ·d log d) flops using a block circulant matrix factorization
approach (see Section 3.1 in [30]). In certain cases one can improve on this; for example, the second
(new) mask construction of Section 2 allows line 1 to be performed in only O(d · δ) flops. Even
in the worst case, however, if one precomputes this block circulant matrix factorization in advance
given the masks mj then line 1 can always be done in O(d · δ2 + δ · d log d) flops thereafter.

The top eigenvector x̃ of X̃ is guaranteed to be found in line 3 of Algorithm 1 in the low-noise
(e.g., noiseless) setting via the shifted inverse power method with shift µ := 2δ−1 and initial vector
e1 (the first standard basis vector). More generally, one may utilize the Rayleigh quotient iteration
with the initial eigenvalue estimate fixed to 2δ − 1 for the first few iterations. In either case, each
iteration can be accomplished with O(d · δ2) flops due to the banded structure of X̃ (see, e.g., [44]).
In the low-noise setting the top eigenvector x̃ can be computed to machine precision in O(log d)
such iterations,3 for a total flop count of O(δ2 ·d log d) for line 3 in that case. In total, then, one can
see that Algorithm 1 will always require just O(δ2 · d log d+ d · δ3) total flops in low-noise settings.
Furthermore, in all such settings a measurement mask support of size δ = O(log d) appears to
suffice.

Figure 1. Illustration of one-dimensional ptychographic imaging (Adapted from

“Fly-scan ptychography”, Huang et al., Scientific Reports 5 (9074), 2015.)

3To see why O(log d) iterations suffice one can appeal to lemmas 1 and 2 below. Let |λ1| > |λ2| ≥ · · · ≥ |λd| be the

eigenvalues of X̃ with associated orthonormal eigenvectors uj ∈ Cd. Let δ := |λ1| − |λ2| > 0. When the noise level is

sufficiently low (so that X̃ ≈ X̃0) one will have both (i) |e∗1uj | = Θ(1/
√
d) ∀j ∈ [d], and (ii) µ ∈ (λ1 − δ/4, λ1 + δ/4)

be true. Thus, we will have that there exists some unit norm r ∈ Cd such that(
X̃ − µI

)−k
e1∥∥∥∥(X̃ − µI)−k e1

∥∥∥∥
2

=

u1 +
∑d
j=2O

(∣∣∣λ1−µ
λj−µ

∣∣∣k)uj

1 +O
(
d
9k

) = u1 +O
(
d

3k

)
r

holds for any given integer k = Ω (log3 d).
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1.4. Connection to Ptychography. In ptychographic imaging (see Fig. 1), small regions of a
specimen are illuminated one at a time and an intensity4 detector captures each of the resulting
diffraction patterns. Thus each of the ptychographic measurements is a local measurement, which
under certain assumptions (e.g., appropriate wavelength of incident radiation, far-field Fraunhofer
approximation), can be modeled as [24, 17]

(10) y(t, ω) =
∣∣∣F [h̃ · Stf ](ω)

∣∣∣2 + η(t, ω).

Here, F denotes the Fourier transform, f : [0, 1]→ C represents the unknown test specimen, St is
the shift operator defined via

(Stf)(s) := f(s+ t),

and h̃ : [0, 1]→ C is the so-called illumination function [47] of the imaging system. To account for

the local nature of the measurements in (10), we assume that supp(h̃) ⊂ supp(f).
As the phase retrieval problem is inherently non-linear and requires sophisticated computer

algorithms to solve, consider the discrete version of (10), with m̃,x0 ∈ Cd discretizing h̃ and f .
Thus (10), in the absence of noise, becomes

(11) (y`)j =

∣∣∣∣∣
d∑

n=1

m̃n (x0)n+` e
− 2πi(j−1)(n−1)

d

∣∣∣∣∣
2

, (j, `) ∈ [d]× [d]0,

where indexing is considered modulo-d, so (y`)j is a diffraction measurement corresponding to the

jth Fourier mode of a circular `-shift of the specimen. We use circular shifts for convenience and
we remark that this is appropriate as one can zero-pad x0 and m̃ in (11) and obtain the same (y`)j
as one would with non-circular shifts. In practice, one may not need to use all the shifts ` ∈ [d]0 as
a subset may suffice. Defining mj ∈ Cd by

(12) (mj)n = m̃n e
2πi(j−1)(n−1)

d

and rearranging (11), we obtain

(y`)j =

∣∣∣∣∣
d∑

n=1

(x0)n+` (mj)n

∣∣∣∣∣
2

=

∣∣∣∣∣
δ∑

n=1

(x0)n+` (mj)n

∣∣∣∣∣
2

(13)

= |〈S`x0,mj〉|2 = 〈S`x0x
∗
0S
∗
` ,mjm

∗
j 〉

= 〈Tδ(x0x
∗
0), S

∗
`mjm

∗
jS`〉, (j, `) ∈ [d]× [d]0

where the second and last equalities follow from the fact that m̃ (and hence each mj) is locally
supported. We note that (13) defines a correlation with local masks or window functions mj . More
importantly, (13) shows that ptychography (with ` ranging over any subset of [d]0) represents a
case of the general system seen in (3).

1.5. Connections to Masked Fourier Measurements. Often, in imaging applications involv-
ing phase retrieval, a mask is placed either between the illumination source and the sample or
between the sample and the sensor. Here, we will see that the mathematical setup that we consider
is applicable in this scenario, albeit when the masks are band-limited. As before, let x0,m ∈ Cd

denote the unknown signal of interest, and a known mask (or window), respectively. Moreover, for
a vector x0 ∈ Cd we denote its discrete Fourier transform x̂0 ∈ Cd by

(x̂0)k :=
d∑

n=1

(x0)ne
−2πi(n−1)(k−1)/d.

4By intensity, we mean magnitude squared.
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Here, we consider squared magnitude windowed Fourier transform measurements of the form

(14) (y`)k =

∣∣∣∣∣
d∑

n=1

(x0)nmn−` e
− 2πi(k−1)(n−1)

d

∣∣∣∣∣
2

, k ∈ [d], ` ∈ {`1, . . . , `L} ⊂ [d]0.

As before, ` denotes a shift or translation of the mask/window, so (y`)k corresponds to the (squared
magnitude of) the kth Fourier mode associated with an `-shift5 of the mask m. Defining the

modulation operator, Wk : Cd 7→ Cd, by its action (Wkx0)n = e2πi(k−1)(n−1)/d (x0)n and applying
elementary Fourier transform properties6 one has

(y`)k = |〈x0, S−`(e
2πi(k−1)`/dWkm)〉|2

= |〈x0, S−`(Wkm)〉|2 = |〈x̂0, ̂S−`(Wkm)〉|2

= |〈x̂0,W−`+1(S−k+1m̂)〉|2

= |〈x̂0, S−k+1(W−`+1m̂)〉|2.(15)

Defining m̂` := W−`+1m̂ and assuming that supp(m̂) ⊂ [δ] (e.g., assuming that m is real-valued
and band-limited), we now have that

(y`)k = 〈x̂0x̂
∗
0, S−k+1m̂`m̂

∗
`S
∗
−k+1〉

= 〈Tδ(x̂0x̂
∗
0), S−k+1m̂`m̂

∗
`S
∗
−k+1〉,

which again represents a case of the general system seen in (3). Moreover, our results all hold for
this setting, albeit with the Fourier transforms of signals and conjugated masks.

1.6. Related Work. The first approach to the phase retrieval problem was proposed in the 1970’s
in [23] by Gerchberg and Saxton, where the measurement data corresponded to knowing the mag-
nitude of both the image x0 and its Fourier transform. This result was famously expanded upon
by Fienup [21] later that decade, one significant improvement being that only the magnitude of the
Fourier transform of x0 must be known in the case of a signal x0 belonging to some fixed convex
set C (typically, C is the set of non-negative, real-valued signals restricted to a known domain).
Though these techniques work well in practice and have been popular for decades, they are noto-
riously difficult to analyze (see, e.g., [41, 43, 42, 8, 7, 20]). These are iterative methods that work
by improving an initial guess until they stagnate. Recently Marchesini et al. proved that alter-
nating projection schemes using generic measurements are guaranteed to converge to the correct
solution if provided with a sufficiently accurate initial guess and algorithms for ptychography were
explored in particular [34]. However, no global recovery guarantees currently exist for alternating
projection techniques using local measurements (i.e., finding a sufficiently accurate initial guess is
not generally easy).

Other authors have taken to proving probabilistic recovery guarantees when provided with glob-
ally supported Gaussian measurements. Methods for which such results exist vary in their ap-
proach, and include convex relaxations [11, 14], gradient descent strategies [13], graph-theoretic
[1] and frame-based approaches [3, 10], and variants on the alternating minimization (e.g., with
resampling) [37].

Several recovery algorithms achieve theoretical recovery guarantees while using at most D =
O(d log4 d) masked Fourier coded diffraction pattern measurements, including both PhaseLift [12,
27], and Wirtinger Flow [13]. However, these measurements are both randomized (which is crucial

5As above, all indexing and shifts are considered modulo-d.
6Ŝ`x0 = W`+1x̂0, Ŵkx0 = S−k+1x̂0, and WkS`x0 = e−2πi(k−1)`/dS`Wkx0.
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to the probabilistic recovery guarantees developed for both PhaseLift and Wirtinger Flow – deter-
ministic recovery guarantees do not exist for either method in the noisy setting), and provide global
information about x0 from each measurement (i.e., the measurements are not locally supported).

Among the first treatments of local measurements are [18, 9] and [32], in which it is shown that
STFT measurements with specific properties can allow (sparse) phase retrieval in the noiseless set-
ting, and several recovery methods are proposed. Similarly, the phase retrieval approach from [1]
was extended to STFT measurements in [39] in order to produce recovery guarantees in the noise-
less setting. More recently, randomized robustness guarantees were developed for time-frequency
measurements in [38]. However, no deterministic robust recovery guarantees have been proven in
the noisy setting for any of these approaches. Furthermore, none of the algorithms developed in
these papers are empirically demonstrated to be competitive numerically with standard alternating
projection techniques for large signals when utilizing windowed Fourier and/or correlation-based
measurements. In [30], the authors propose the measurement scheme developed in the current
paper and prove the first deterministic robustness results for a different greedy recovery algorithm.

1.7. Organization. Section 2 discusses two collections of local correlation masks mj , one of which
is novel and the other of which was originally studied in [30]. Most importantly, Section 2 shows
that the recovery of Tδ(x0x

∗
0) from measurements associated with the proposed masks can be done

stably in the presence of measurement noise. Moreover, since in the noisy regime, the leading

eigenvector x̃ of X̃ (associated with line 3 of Algorithm 1) will no longer correspond exactly to the

true phases x̃0, we are interested in a perturbation theory for the eigenvectors of X̃0. Intuitively, x̃

will be most accurate when the eigenvalue of X̃0 associated with x̃0 is well separated from the rest

of the eigenvalues and so, accordingly, Section 3 studies the spectrum of X̃0. Indeed, this eigenvalue

is rigorously shown to control the stability of the top eigenvector of X̃0 with respect to noise, and
Section 4 develops perturbation results concerning their top eigenvectors by adapting the spectral
graph techniques used in [1]. Recovery guarantees for the proposed phase retrieval method are then
compiled in Section 5. Numerical results demonstrating the accuracy, efficiency, and robustness of
the proposed methods are finally provided in Section 67, while Section 7 contains some concluding
remarks and avenues for further research. In Appendix A, we provide an alternate, weaker but
easier to derive eigenvector perturbation result analogous to the one in Section 4 which may be of
independent interest.

2. Well-conditioned measurement maps

Here, we present two example constructions for which the linear operator A|Tδ(Cd×d) used in Step
1 of Algorithm 1 is well conditioned. Such constructions are crucial for the stability of the method
to additive noise.

Example 1: In [30], a construction was proposed for the masks m` in (2) that guarantees the stable
invertibility of A. This construction comprises windowed Fourier measurements with parameters
δ ∈ Z+ and a ∈ [4,∞) corresponding to the 2δ − 1 masks mj ∈ Cd, j = 1, ..., 2δ − 1 with entries
given by

(16) (mj)n =

{
e−n/a
4√2δ−1 · e

2πi·(n−1)·(j−1)
2δ−1 if n ≤ δ

0 if n > δ
.

Here, measurements using all shifts ` = 1, ..., d of each mask are taken. In the notation of (3), this
corresponds to K = 2δ − 1 and P = [d]0, which yields D = (2δ − 1)d total measurements. By

7MATLAB code to run the BlockPR algorithm is available online at [31].

8



considering the basis {Eij} for Tδ(Cd×d) given by

Ei,j(s, t) =

{
1, (i, j) = (s, t)
0, otherwise

it was shown in [30] that this system is both well conditioned and rapidly invertible. In particular,
if M ′ is the matrix representing the measurement mapping A : Tδ(Cd×d)→ Tδ(Cd×d) with respect
to the basis {Eij}, the following estimates of the condition number and cost of inversion hold.

Theorem 3 ([30]). Consider measurements of the form (16) with a := max
{

4, δ−1
2

}
. Let M ′ ∈

CD×D be the matrix representing the measurement mapping A : Tδ(Cd×d)→ Tδ(Cd×d) with respect
to the basis {Eij}. Then, the condition number of M ′ satisfies

κ
(
M ′
)
< max

{
144e2,

9e2

4
· (δ − 1)2

}
,

and the smallest singular value of M ′ satisfies

σmin

(
M ′
)
>

7

20a
· e−(δ+1)/a >

C

δ

for an absolute constant C ∈ R+. Furthermore, M ′ can be inverted in O (δ · d log d)-time.

This theorem indicates that one can both efficiently and stably solve for x0x
∗
0 using (3) with the

measurements given in (16). This measurement scheme is also interesting because it corresponds
to a ptychography system if we take the illumination function (i.e. the physical mask) in (11) to

be m̃n = e−n/a
4√2δ−1 and assume that d = k(2δ − 1) for some k ∈ N; in practice, this may be achieved

by zero-padding the specimen. Then we may take the subset of the measurements (12) given by
j = (p − 1)k + 1, p ∈ [2δ − 1] to obtain the masks specified in (16). We also remark that in this
setup, only one physical mask is required, as the index j in (16) denotes the different frequencies
observed in the Fourier domain at the sensor array.

Example 2: We provide a second deterministic construction that improves on the condition num-
ber of the previous collection of measurement vectors. We merely set m1 = e1,m2j = e1+ej+1, and
m2j+1 = e1 + iej+1 for j = 1, . . . , δ − 1. A simple induction shows that {S`mjm

∗
jS
∗
` }`∈[d]0,j∈[2k−1]

is a basis for Tk(Cd×d), so if we take m1, . . . ,m2δ−1 for our masks we’ll have a basis for Tδ(Cd×d).
Indeed, if we let

B : Tk(Cd×d)→ Cδ×d

be the measurement operator defined via(
B(X)

)
`,j

= 〈S`mjm
∗
jS
∗
` , X〉, (`, j) ∈ [d]0 × [2k − 1]

we can immediately solve for the entries of X ∈ Tk(Hd×d) from B(X) =: B by observing that

Xi,i = Bi−1,1
Xi,i+k = 1

2Bi−1,2k + i
2Bi−1,2k+1 − 1+i

2 (Bi−1,1 +Bi+k−1,1),

where we naturally take the indices of B mod d. This leads to an upper triangular system if we
enumerate X by its diagonals; namely we regard Tδ(Hd×d) as a d(2δ− 1) dimensional vector space
over R and set, for i ∈ [d]

zkd+i =

{
Re(Xi,i+k), 0 ≤ k < δ

Im(Xi,i+k−δ+1), δ ≤ k < 2δ − 1
, ykd+i =

 B(X)i,1, k = 0
B(X)i,2k, 1 ≤ k < δ

B(X)i,2(k−δ+1)+1, δ ≤ k < 2δ − 1
.

9



Then with S = S1 ∈ Rd×d representing the circular shift operator as before, we have

y =

Id 0 0
D 2Id(δ−1) 0
D 0 2Id(δ−1)

 z =: Cz, where D =


Id + S
Id + S2

...
Id + Sδ−1

 .
Since the matrix C is upper triangular, its inverse is immediate:

C−1 =

 Id 0 0
−D/2 Id(δ−1)/2 0
−D/2 0 Id(δ−1)/2

 .
To ascertain the condition number of B, then, all we need is the extremal singular values of C. We
bound the top singular value by considering

σmax(C) = max
||w||2+||v||2=1

∥∥∥∥C [wv
]∥∥∥∥ =

∥∥∥∥∥∥
 w
Dw
Dw

+ 2

[
0
v

]∥∥∥∥∥∥
≤

√
||w||2 + 2||w + Sw||2 + · · ·+ 2||w + Sδ−1w||2 + ||2v||

≤
√

8(δ − 1) + 1||w||+ 2||v|| ≤
√

8(δ − 1) + 5 ≤ 2
√

2δ,

where in the last line we have used ||w||2 + ||v||2 = 1. By a nearly identical argument, we find

1

σmin(C)
= σmax(C−1) ≤

√
2δ

so that the condition number is bounded by κ(C) ≤ 4δ.

3. The Spectrum of X̃0

Consider line 3 of Algorithm 1, which shows that we are trying to recover x̃0 := x0
|x0| via an

eigenvector method. Here, we show that X̃0 has x̃0 as its top eigenvector and we investigate the

spectral properties of X̃0 in this section, following the intuition that the eigenvalue gap |λ1 − λ2|
will affect the robustness of the spectral step in the algorithm.

For the remainder of the paper, we let 1 refer to a constant vector of all ones; its size will always
be determined by context. To begin, consider U = Tδ(11

∗), i.e.,

(17) Uj,k =

{
1 if |j − k| mod d < δ
0 otherwise

.

Observe that U is circulant for all δ, so its eigenvectors are always discrete Fourier vectors. Setting

ωj = e
2πi j−1

d for j = 1, 2, . . . , d, one can also see that the eigenvalues of U are given by

(18) νj =

d∑
k=1

(U)1,kω
k−1
j = 1 +

δ−1∑
k=1

ωkj + ω−kj = 1 + 2

δ−1∑
k=1

cos

(
2π(j − 1)k

d

)
,

for all j = 1, . . . , d. In particular, ν1 = 2δ − 1. Set Λ = diag{ν1, . . . , νd} and let F denote the
unitary d× d discrete Fourier matrix with entries

Fj,k :=
1√
d
e
2πi

(j−1)(k−1)
d ,

then U = FΛF ∗.
We consider that X̃0 and U are similar; indeed X̃0 = D̃0UD̃

∗
0, where D̃0 = diag{(x̃0)1, . . . , (x̃0)d}.

Since |(x̃0)j | = 1 for each j, we have that D̃0 is unitary. Thus the eigenvalues of X̃0 are given by
10



(18), and its eigenvectors are simply the discrete Fourier vectors modulated by the entries of x̃0.
We now have the following lemma.

Lemma 1. Let X̃0 be defined as in (6). Then

X̃0 = D̃0FΛF ∗D̃∗0

where F is the unitary d × d discrete Fourier transform matrix, D̃0 is the d × d diagonal matrix
diag{(x̃0)1, . . . , (x̃0)d}, and Λ is the d× d diagonal matrix diag{ν1, . . . , νd} where

νj := 1 + 2

δ−1∑
k=1

cos

(
2π(j − 1)k

d

)
for j = 1, . . . , d.

We next estimate the principal eigenvalue gap of X̃0. This information will be crucial to our
understanding of the stability and robustness of Algorithm 1.

3.1. The Spectral Gap of X̃0. Set θj = 2πj
d and begin by observing that, for any θ ∈ R,

δ−1∑
k=1

cos(θk) =
1

2

(
sin(θ(δ − 1/2))

sin(θ/2)
− 1

)
.

Accordingly, defining lδ : R→ R by lδ(θ) := 1 + 2
∑δ−1

k=1 cos(θk) we have that

νj+1 = lδ(θj) =
sin(θj(δ − 1/2))

sin(θj/2)
.(19)

Thus, the eigenvalues of X̃0 are sampled from the (δ− 1)st Dirichlet kernel. Of course, ν1 = 2δ− 1
is the largest of these in magnitude, so the eigenvalue gap minj ν1 − |νj | is at most equal to

ν1 − ν2 = (2δ − 1)− sin(π/d(2δ − 1))

sin(π/d)

≤ (2δ − 1)−
π/d(2δ − 1)− 1

6
(π/d(2δ − 1))3

π/d

=
1

6

(π
d

)2
(2δ − 1)3 ≤ 4π2

3

δ3

d2
.

Thus, ν1 − |ν2| . δ3

d2
. However, a lower bound on the spectral gap is more useful. The following

lemma establishes that the spectral gap is indeed ∼ δ3

d2
for most reasonable choices of δ < d.

Lemma 2. Let ν1 = 2δ − 1, ν2, . . . , νd be the eigenvalues of X̃0. Then, there exists a positive
absolute constant C ∈ R+ such that

min
j∈{2,3,...,d}

(ν1 − |νj |) ≥ C
δ3

d2

whenever d ≥ 4δ and δ ≥ 3.

Proof. Let θj = 2πj
d . We find the lower bound by considering that θj ∈ [π/d, 2π − π/d] for every

j > 0, so

ν1 −max |νj | ≥ ν1 − max
θ∈[π/d,2π−π/d]

|lδ(θ)| = (2δ − 1)− max
θ∈[π/d,π]

|lδ(θ)|,

where we have used our eigenvalue formula from (19), and the symmetry of lδ about θ = π.
11



We now show that lδ is decreasing towards its first zero at θ = 2π
2δ−1 by considering the derivative

l′δ(θ) =
(δ − 1/2) cos((δ − 1/2)θ) sin(θ/2)− 1/2 sin((δ − 1/2)θ) cos(θ/2)

sin(θ/2)2
,

which is non-positive if and only if

(2δ − 1) sin(θ/2) cos((δ − 1/2)θ) ≤ sin((δ − 1/2)θ) cos(θ/2).

Since tan(·) is convex on [0, π/2), this last inequality will hold for θ ∈ [0, π
2δ−1). For θ ∈ [ π

2δ−1 ,
2π

2δ−1),

cos((δ− 1/2)θ) ≤ 0 while the remainder of the terms are non-negative, so the inequality also holds.
Therefore,

ν1 −max
j>1
|νj | ≥ (2δ − 1)−max

{
ν2, max

θ∈[ 2π
2δ−1

,π]
|lδ(θ)|

}
,

which permits us to bound (2δ − 1)− ν2 and (2δ − 1)− max
θ∈[ 2π

2δ−1
,π]
|lδ(θ)| separately.

For max
θ∈[ 2π

2δ−1
,π]
|lδ(θ)|, we simply observe that

max
θ∈[ 2π

2δ−1
,π]
|lδ(θ)| ≤ max

θ∈[ 2π
2δ−1

,π]

1

sin(θ/2)
=

(
sin

(
π

2δ − 1

))−1
≤ 2δ − 1

2
,

where the last line uses that π
2δ − 1

≤ π/2 (since δ ≥ 3). This yields ν1− max
θ∈[ 2π

2δ−1
,π]
|lδ(θ)| ≥ 1

2(2δ−1).

As for ν2, we have θ1 · (δ − 1) ≤ π/2 (since 4(δ − 1) ≤ d). Thus, cos(·) will be concave on

[0, θ1(δ − 1)]. Considering (18), this will give
∑δ−1

k=1 cos(kθ1) ≤ (δ − 1) cos
(
θ1

δ
2

)
, so

ν1 − ν2 ≥ 2(δ − 1)
(
1− cos

(
π δd
))

≥ 2(δ − 1)

(
(π δd)2

4

)
≥ π2

3
· δ

3

d2
.

The stated result follows. �

We are now sufficiently well informed about X̃0 to consider perturbation results for its leading
eigenvector.

4. Perturbation Theory for X̃0

In this section we will use spectral graph theoretic techniques to obtain a bound on the error
associated with recovering phase information using our method. In particular, we will adapt the
proof of Theorem 6.3 from [1] to develop a bound for minθ∈[0,2π] ‖x̃0 − eiθx̃‖2. This approach

involves considering both X̃ from Algorithm 1 and X̃0 from (6) in the context of spectral graph
theory, so we begin by defining essential terms. The idea is to consider a graph whose vertices
correspond to the entries of x̃0 from (6), and whose edges carry the relative phase data.8

8The interested reader is also referred to Appendix A where more standard perturbation theoretic techniques are
utilized in order to obtain a weaker bound on the error associated with recovering phase information via the proposed
approach.
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We begin with an undirected graph G = (V,E) with vertex set V = {1, 2, . . . , d} and weight
mapping w : V × V → R+, where wij = wji and wij = 0 iff {i, j} /∈ E. The degree of a vertex i is

deg(i) :=
∑

j s.t. (i,j)∈E

wij ,

and we define the degree matrix and weighted adjacency matrix of G by

D := diag(deg(i)) and Wij := wij ,

respectively. The volume of G is

vol(G) :=
∑
i∈V

deg(i).

Finally, the Laplacian of G is the d× d real symmetric matrix

L := I −D−1/2WD−1/2 = D−1/2(D −W )D−1/2,

where I ∈ {0, 1}d×d is the identity matrix.
When G is connected, Lemma 1.7 of [15] shows that the nullspace of (D −W ) is span(1), and

the nullspace of L is span(D1/21). Observing that D −W is diagonally semi-dominant, it follows
from Gershgorin’s disc theorem that (D −W ) and L are both positive semidefinite. Alternatively,
one may also note that

v∗(D −W )v =
∑
i∈V

v2i deg(i)−
∑
j∈V

vivjwij

 =
1

2

∑
i,j∈V

wij(vi − vj)2 ≥ 0

holds for all v ∈ Rd. Thus, we may order the eigenvalues of L in increasing order so that 0 = λ′1 <
λ′2 ≤ · · · ≤ λ′n. We then define the spectral gap of G to be τ = λ′2.

Herein, though we will state the main theorem of this section more generally, we will only be
interested in the case where the graph G = (V,E) is the simple unweighted graph whose adjacency
matrix is U = Tδ(11

∗) as in (17). In this case we will have W = U and D = (2δ − 1)I. We also
immediately obtain the following corollary of Lemmas 1 and 2.

Corollary 1. Let G be the simple unweighted graph whose adjacency matrix is U from (17). Let
L be the Laplacian of G. Then, there exists a bijection σ : [d]→ [d] such that

λ′σ(j) = 1−
1 + 2

∑δ−1
k=1 cos

(
2π(j − 1)k

d

)
2δ − 1

for j = 1, . . . , d. In particular, if d ≥ 4(δ − 1) and δ ≥ 3 then τ = λ′2 > C ′′′δ2/d2 for an absolute
constant C ′′′ ∈ R+.

Using this graph G as a scaffold we can now represent our computed relative phase matrix X̃
from Algorithm 1 by noting that for some (Hermitian) perturbations ηij we will have

(20) X̃ij =
(x0)i(x0)

∗
j + ηij

|(x0)i(x0)∗j + ηij |
· wij =

(x0)i(x0)
∗
j + ηij

|(x0)i(x0)∗j + ηij |
· χE(i,j).

Using this same notation we may also represent our original phase matrix X̃0 via G by noting that

(21) (X̃0)ij =
(x0)i(x0)

∗
j

|(x0)i(x0)∗j |
· wij = sgn

(
(x0)i(x0)

∗
j

)
· χE(i,j).

We may now define the connection Laplacian of the graph G associated with the Hermitian

and entrywise normalized data given by X̃ to be the matrix

(22) L1 = I −D−1/2(X̃ ◦W )D−1/2,
13



where ◦ denotes entrywise (Hadamard) multiplication. Following [6], given X̃ and a vector y ∈ Cd,

we define the frustration of y with respect to X̃ by

(23) η
X̃

(y) :=
1

2

∑
(i,j)∈E

wij |yi − X̃ijyj |2∑
i∈V

deg(i)|yi|2
=

y∗(D − (X̃ ◦W ))y

y∗Dy
.

We may consider η
X̃

(y) to measure how well y (viewed as a map from V to C) conforms to the

computed relative phase differences X̃ across the graph G.
In addition, we adapt a result from [6]:

Lemma 3 (Cheeger inequality for the connection Laplacian). Suppose that G = (V = [d], E) is
a connected graph with degree matrix D ∈ [0,∞)d×d, weighted adjacency matrix W ∈ [0,∞)d×d,

and spectral gap τ > 0, and that X̃ ∈ Cd×d is Hermitian and entrywise normalized. Let u ∈ Cd

be an eigenvector of L1 from (22) corresponding to its smallest eigenvalue. Then, w = sgn(u) =

sgn
(
D−1/2u

)
satisfies

η
X̃

(w) ≤ C ′

τ
· min
y∈Cd

η
X̃

(sgn(y)),

where C ′ ∈ R+ is a universal constant.

Proof. One can see that

inf
v∈Cd\{0}

v∗L1v

v∗v
= inf

y∈Cd\{0}

(D1/2y)∗L1(D
1/2y)

(D1/2y)∗(D1/2y)
= inf

y∈Cd\{0}

y∗(D − (X̃ ◦W ))y

y∗Dy

= inf
y∈Cd\{0}

η
X̃

(y) ≤ min
y∈Cd

η
X̃

(sgn(y)).

From here, Lemma 3.6 in [6] gives

η
X̃

(w) ≤ 44

τ
η
X̃

(
D−1/2u

)
=

44

τ
· inf
v∈Cd\{0}

v∗L1v

v∗v
≤ 44

τ
· min
y∈Cd

η
X̃

(sgn(y)).

�

We now state the main result of this section:

Theorem 4. Suppose that G = (V = [d], E) is an undirected, connected, and unweighted graph
(so that Wij = χE(i,j)) with spectral gap τ > 0. Let u ∈ Cd be an eigenvector of L1 from (22)
corresponding to its smallest eigenvalue, and let

x̃ = sgn(u) and x̃0 = sgn(x0).

Then for some universal constant C ∈ R+,

min
θ∈[0,2π]

||x̃− eiθx̃0||2 ≤ C
‖X̃ − X̃0‖F

τ ·
√

min
i∈V

(deg(i))
,

where X̃ and X̃0 are defined as per (20) and (21), respectively.

The proof follows by combining the two following lemmas, which share the hypotheses of the
theorem. Additionally, we introduce the notation g ∈ Cd and Λ ∈ Cd×d, where

gi = (x̃0)
∗
i x̃i and Λij = (X̃0)

∗
ijX̃ij ,

and observe that |gi| = |Λij | = 1 for each (i, j) ∈ E.
14



Lemma 4. Under the hypotheses of Theorem 4, there exists an angle θ ∈ [0, 2π] such that

τ
∑
i∈V

deg(i)|gi − eiθ|2 ≤ 2
∑

(i,j)∈E

|gi − gj |2.

Lemma 5. Under the hypotheses of Theorem 4, there exists an absolute constant C such that

2
∑

(i,j)∈E

|gi − gj |2 ≤
C

τ
‖X̃ − X̃0‖2F .

From these lemmas, the theorem follows immediately by observing
∑

i∈V |gi−eiθ|2 = |x̃−eiθx̃0|22.

Proof of Lemma 4. We set α =

∑
i∈V

deg(i)gi

vol(G)
and wi = gi − α. Then

1
∗Dw =

∑
i∈V

deg(i)(gi − α) = 0,

so D1/2w is orthogonal to D1/21. Noting that the null space of L is spanned by D1/21 when τ > 0,
and recalling that L � 0, we have

(D1/2w)∗L(D1/2w)

w∗Dw
≥ min

y∗D1/21=0

y∗Ly

y∗y
= τ.

Therefore,

τw∗Dw ≤ w∗(D −W )w = g∗(D −W )g

=
∑
i∈V

deg(i)|gi|2 −
∑
i∈V

g∗i
∑

(i,j)∈E

gj =
∑

(i,j)∈E

(1− g∗i gj)

=
1

2

∑
(i,j)∈E

|gi − gj |2.

We note that τw∗Dw = τ
∑

i∈V deg(i)|gi − α|2, while we seek a bound on
∑

i∈V deg(i)|gi − eiθ|2.
To that end, we use the fact that |gi| = |sgn(α)| = 1 to obtain

|gi − sgn(α)| ≤ |gi − α|+ |α− sgn(α)| ≤ 2|gi − α|.

Setting θ := argα, we have the stated result. �

Proof of Lemma 5. Observe that for any two real numbers a, b ∈ R, we have 1
2a

2 − b2 ≤ (a − b)2.
Thus, by the reverse triangle inequality we have∑

(i,j)∈E

(
1

2
|gi − gj |2 − |Λij − 1|2

)
≤

∑
(i,j)∈E

(|gi − gj | − |Λij − 1|)2

≤
∑

(i,j)∈E

|gi − Λijgj |2

=
∑

(i,j)∈E

|x̃i − X̃ijx̃j |2

= 2vol(G) · η
X̃

(x̃),

as the denominator of (23) is 2vol(G) whenever the entries of y all have unit modulus.
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Lemma 3 now tells us that∑
(i,j)∈E

(
1

2
|gi − gj |2 − |Λij − 1|2

)
≤ 2C ′vol(G)

τ
min
y∈Cd

η
X̃

(sgn(y)) ≤ 2C ′vol(G)

τ
η
X̃

(x̃0).

Moreover,

η
X̃

(x̃0) =

∑
(i,j)∈E

|(x̃0)i − X̃ij(x̃0)j |2

2
∑
i∈V

deg(i)|(x̃0)i|2

=

∑
(i,j)∈E

|(x̃0)i(x̃0)
∗
j − X̃ij |2

2vol(G)

=
‖X̃0 − X̃‖2F

2vol(G)
,

so that
∑

(i,j)∈E
1
2 |gi − gj |

2 ≤ C′

τ ‖X0 −X‖2F +
∑

(i,j)∈E |Λij − 1|2. Considering also that∑
(i,j)∈E

|Λij − 1|2 =
∑

(i,j)∈E

|X̃ij − (X̃0)ij |2 = ‖X̃ − X̃0‖2F

and τ ≤ 1, this completes the proof. �

We may now use Theorem 4 to produce a perturbation bound for our banded matrix of phase

differences X̃0.

Corollary 2. Let X̃0 be the matrix in (6), x̃0 be the vector of true phases (6), and X̃ be as

in line 3 of Algorithm 1 with x̃ = sgn(u) where u is the top eigenvector of X̃. Suppose that

‖X̃0 − X̃‖F ≤ η‖X̃0‖F for some η > 0. Then, there exists an absolute constant C ′ ∈ R+ such that

min
θ∈[0,2π]

‖x̃0 − eiθx̃‖2 ≤ C ′
ηd

5
2

δ2
.

Proof. We apply Theorem 4 with the unweighted and undirected graph G = (V,E), where V = [d]
and E = {(i, j) : |i − j| mod d < δ}. Observe that G is also connected and (2δ − 1)-regular so
that mini∈V (deg(i)) = 2δ− 1. The spectral gap of G is τ > C ′′′δ2/d2 > 0 by Corollary 1. We know

that ‖X̃0‖F =
√
d(2δ − 1), so that ‖X̃0 − X̃‖F ≤ C ′′η(dδ)1/2. Finally, if u is the top eigenvector

of X̃ then it will also be an eigenvector of L1 corresponding to its smallest eigenvalue since, here,

L1 = I − 1
2δ−1X̃.

Combining these observations we have

min
θ∈[0,2π]

‖x̃0 − eiθx̃‖2 ≤ C
C ′′η(dδ)1/2

C ′′′δ2/d2 · (2δ − 1)1/2
= C ′

ηd5/2

δ2
.

�

We are now properly equipped to analyze the robustness of Algorithm 1 to noise.
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5. Recovery Guarantees for the Proposed Method

Herein we will assume Algorithm 1 is provided with measurements y of the form (7) such that the
linear operator (4) is invertible on Tδ(Cd×d) with condition number κ > 0. Unless otherwise stated,
we follow the notation of §1.1- §1.2; therefore, our assumptions imply that ‖X −X0‖F ≤ κ‖n‖2.

We now aim to bound the Frobenius norm of the perturbation error (X̃ − X̃0) present in the

matrix X̃ formed in line 2 of Algorithm 1. Toward this end we define the set of ρ-small indexes of
x0 to be

(24) Sρ :=

{
j

∣∣∣∣ | (x0)j | < (κ‖n‖2ρ

) 1
4

}
where ρ ∈ R+ is a free parameter. With the definition of Sρ in hand we can bound the perturbation

error (X̃ − X̃0) using the next lemma.

Lemma 6. Let X̃ be the matrix computed in line 2 of Algorithm 1. We have that

‖X̃ − X̃0‖F ≤ C
√
ρκδ ‖n‖2 + |Sρ|

d
· ‖X̃0‖F

holds for all ρ ∈ R+, where C is an absolute constant.

Proof. Set Njk = Xjk − (X0)jk and consider that, for any j, k ∈ Scρ,

|(X̃0)jk − X̃jk| =
∣∣∣(X̃0)jk − sgn

(
Xjk
|(X0)jk|

)∣∣∣ ≤ ∣∣∣(X̃0)jk −
Xjk
|(X0)jk|

∣∣∣+
∣∣∣ Xjk
|(X0)jk| − sgn

(
Xjk
|(X0)jk|

)∣∣∣
≤ 2

∣∣∣(X̃0)jk −
Xjk
|(X0)jk|

∣∣∣ = 2
|Njk|
|(X0)jk| ≤ 2ρ

1
2
|Njk|

(κ‖n‖2)
1
2
.

Thus, there exists an absolute constant C ′ ∈ R+ such that

‖X̃ − X̃0‖2F ≤
∑
j,k∈Scρ

4ρ
|Njk|2

κ‖n‖2
+

∑
j∈Sρ, or k∈Sρ

|(X̃0)jk − X̃jk|2

≤ 4ρ
‖N‖2F
κ‖n‖2

+
∑
j∈Sρ

4 · (4δ − 3) = 4ρ
‖N‖2F
κ‖n‖2

+ 4 · (4δ − 3) |Sρ|

≤ C ′(ρκ‖n‖2 + δ |Sρ|).

The proof is completed by recalling that ‖X̃0‖F =
√

(2δ − 1)d. �

We are finally ready to prove a robustness result for Algorithm 1.

Theorem 5. Suppose that X̃ and X̃0 satisfy ‖X̃ − X̃0‖F ≤ η‖X̃0‖F for some η > 0. Then, the
estimate x produced by Algorithm 1 satisfies

min
θ∈[0,2π]

∥∥∥x0 − eiθx
∥∥∥
2
≤ C‖x0‖∞

(
d5/2

δ2

)
η + Cd

1
4

√
κ‖n‖2,

where C ∈ R+ is an absolute universal constant. Alternatively, one can bound the error in terms
of the size of the index set Sρ from (24) as

(25) min
θ∈[0,2π]

∥∥∥x0 − eiθx
∥∥∥
2
≤ C ′‖x0‖∞

(
d

δ

)2√
ρ
κ

δ
‖n‖2 + |Sρ|+ C ′d

1
4

√
κ‖n‖2,

for any desired ρ ∈ R+, where C ′ ∈ R+ is another absolute universal constant.
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Proof. Let φ ∈ [0, 2π) be arbitrary; then eiφx = |x| ◦ eiφx̃ and x0 = |x0| ◦ x̃0, where ◦ denotes the
entrywise (Hadamard) product.

We see that

min
φ∈[0,2π]

‖x0 − eiφx‖2 = min
φ∈[0,2π]

∥∥∥|x0| ◦ x̃0 − |x| ◦ eiφx̃
∥∥∥
2

≤ min
φ∈[0,2π]

∥∥∥|x0| ◦ x̃0 − |x0| ◦ eiφx̃
∥∥∥
2

+
∥∥∥|x0| ◦ eiφx̃− |x| ◦ eiφx̃

∥∥∥
2

where the second term is now independent of φ. As a result we have that

min
φ∈[0,2π]

‖x0 − eiφx‖2 ≤ ‖x0‖∞
(

min
φ∈[0,2π]

‖x̃0 − eiφx̃‖2
)

+ C ′′
√
κ
√
d · ‖n‖2

for some absolute constant C ′′ ∈ R+. Here the bound on the second term follows from Lemma 3
of [30] and the Cauchy-Schwarz inequality. The first inequality of the theorem now results from an
application of Corollary 2 to the first term. The second inequality then follows from Lemma 6. �

Looking at the second inequality (25) in Theorem 5 we can see that the error bound there will be
vacuous in most settings unless Sρ = ∅. Recalling (24), one can see that Sρ will be empty as soon

as ρ = κδ‖n‖2/ |(x0)min|4, where (x0)min is the smallest magnitude of any entry in x0. Utilizing
this value of ρ in (25) leads to the following corollary of Theorem 5.

Corollary 3. Let (x0)min := minj |(x0)j | be the smallest magnitude of any entry in x0. Then, the
estimate x produced by Algorithm 1 satisfies

min
θ∈[0,2π]

∥∥∥x0 − eiθx
∥∥∥
2
≤ C

(
‖x0‖∞
(x0)2min

)(
d

δ

)2

κ‖n‖2 + Cd
1
4

√
κ‖n‖2,

where C ∈ R+ is an absolute universal constant.

Corollary 3 yields a deterministic recovery result for any signal x0 which contains no zero entries.
If desired, a randomized result can now be derived from Corollary 3 for arbitrary x0 by right
multiplying the signal x0 with a random “flattening” matrix as done in [30]. Finally, we note that
a trivial variant of Corollary 3 can also be combined with the discussion in §1.5 in order to generate
recovery guarantees for the windowed Fourier measurements defined by (14). However, we will
leave such variants and extensions to the interested reader.

6. Numerical Evaluation

We now present numerical simulations supporting the theoretical recovery guarantees in Section
5. In addition to illustrating the performance of our algorithm, we also compare it against other
existing phase retrieval methods using local measurements. All the results presented here may be
recreated using the open source BlockPR Matlab software package which is freely available at [31].

In Section 6.2 we utilize the sparse measurement masks of Example 2 (see §2 for details). For
each choice of δ these measurements correspond to 2δ − 1 physical masks which are each shifted
d times across the sample x0 by shifts of size 1. In Section 6.3, we then consider the Fourier
measurement masks of Example 1 from §2. For each choice of δ these measurements correspond
to 2δ − 1 Fourier measurements of one physical mask/illumination which is also shifted d times
across the sample x0 by shifts of size 1. These Fourier measurements correspond particularly well
to ptychographic measurements of a large sample in the small δ regime.

For completeness, we also present selected results comparing the proposed formulation against
other well established phase retrieval algorithms (such as Wirtinger Flow) using global measure-
ments such as coded diffraction patterns (CDPs) [12, §1.5]. These measurements correspond to
those one might obtain from the diffraction patterns of the sample x0 after it has been masked by
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several different global random windows. Unless otherwise stated, we use i.i.d. zero-mean complex
Gaussian random test signals with measurement errors modeled using an additive Gaussian noise
model. Applied measurement noise and reconstruction error are both reported in decibels (dB) in
terms of signal to noise ratios (SNRs), with

SNR (dB) = 10 log10

(∑D
j=1 |〈aj ,x0〉|4

Dσ2

)
, Error (dB) = 10 log10

(
minθ ‖eiθx− x0‖22

‖x0‖22

)
,

where aj ,x0,x, σ
2 and D denote the measurement vectors, true signal, recovered signal, (Gaussian)

noise variance and number of measurements respectively. All simulations were performed on a
laptop computer running GNU/Linux (Ubuntu Linux 16.04 x86_64) with an Intelr CoreTMi3-
3120M (2.5 GHz) processor, 4GB RAM and Matlab R2015b. Each data point in the timing and
robustness plots was obtained as the average of 100 trials.

6.1. Numerical Improvements to Algorithm 1: Magnitude Estimation. Looking at the
matrix X formed on line 1 of Algorithm 1 one can see that

X = X0 +N ′,

where X0 is the banded Hermitian matrix Tδ(x0x
∗
0) defined in (5), and N ′ contains arbitrary banded

Hermitian noise. As stated and analyzed above, Algorithm 1 estimates the magnitude of each entry
of x0 by observing that

Xjj = |(x0)j |2 +N ′jj , j ∈ [d].

Though this magnitude estimate suffices for our theoretical treatment above, it can be improved
in practice by using slightly more general techniques.

Considering the component-wise magnitude of X, |X| ∈ Rd×d, one can see that its entries are

|X|jk =

{
|(x0)j ||(x0)k|+N ′′jk if |j − k| mod d < δ

0 otherwise
,

where N ′′ = |X|− |X0| represents the changes in magnitude to the entries of |X0| due to noise. We
may then let Dj ∈ Rδ×δ denote the submatrix of |X| given by

(Dj)kh = |X|(j+k−1) mod d, (j+h−1) mod d,

for all j ∈ [d]; similarly we let N ′′j denote the respective submatrices of N ′′. With this notation, it
is clear that

Dj = |x0|(j)(|x0|(j))∗ +N ′′j ,

where |x0|(j)k = |x0|k+j−1, k ∈ [δ]. This immediately suggests that we can estimate the magnitudes
of the entries of x0 by calculating the top eigenvectors of these approximately rank one Dj matrices.

Indeed, if we do so for all of D1, . . . , Dd ∈ Rδ×δ, we will produce δ estimates of each (x0)j
entry’s magnitude. A final estimate of each |(x0)j | can then be computed by taking the average,
median, etc. of the δ different estimates of |(x0)j | provided by each of the leading eigenvectors of
Dj−δ+1, . . . , Dj ; in our experiments, we used the arithmetic mean. Of course, one need neither use
all d possible Dj matrices, nor make them have size δ× δ. More generally, to reduce computational

complexity, one may instead use d/s matrices, D̃j′ ∈ Rγ×γ , of size 1 ≤ γ ≤ δ and with shifts s ≤ γ
(dividing d), having entries

(D̃j′)k,h = |X|(sj′+k−s) mod d, (sj′+h−s) mod d.

Computing the leading eigenvectors of D̃j′ for all j′ ∈ [d/s] will then produce (multiple) estimates
of each magnitude |(x0)j | which can then be combined as desired to produce our final magnitude
estimates. As we shall see below, one can achieve better numerical robustness to noise using this
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technique than what can be achieved using the simpler magnitude estimation technique presented
in line 4 of Algorithm 1.
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Figure 2. Robust Phase Retrieval – Local vs. Global Measurements

6.2. Experiments with Measurements from Example 2 of §2. We begin by presenting results
in Fig. 2a demonstrating the improved noise robustness of the proposed method over the formulation
in [30]. Recall that [30] uses a greedy angular synchronization method instead of the eigenvector-
based procedure analyzed in this paper. Fig. 2a plots the reconstruction error when recovering
a d = 128 length complex Gaussian test signal using D = d4d log2 de measurements at different
added noise levels. As mentioned above, the local correlation measurements described in Example
2 of Section 2 are utilized in this plot and in all the ensuing experiments in this subsection unless
otherwise indicated. Three variants of the proposed algorithm are plotted in Fig. 2a:

(1) an implementation of Algorithm 1 (denoted by �’s),
(2) an implementation of Algorithm 1 post-processed using 60 iterations of the Hybrid Input–

Output (HIO) and Error Reduction (ER) algorithms (implemented in two successive sets,
with each set consisting of 20 iterations of HIO followed by 10 ER iterations; denoted by
◦’s), and

(3) the algorithmic implementation from [30] (denoted by +’s).

We see that the eigenvector-based angular synchronization method proposed in this paper provides
more accurate reconstructions – especially at low SNRs – over the greedy angular synchronization of
[30]. Moreover, post-processing using the HIO+ER algorithms as detailed above yields a significant
improvement in reconstruction errors over the two other variants. For reference, we also include
reconstruction errors with the Wirtinger Flow algorithm (denoted by ♦’s) when using (global) coded
diffraction pattern (CDP) measurements. Specifically, we use 2δ − 1 (with δ = 2 log2 d = 14) oc-
tanary modulations/codes as described in [12, §1.5, (1.9)] to construct the CDP measurements.
Clearly, using global measurements such as coded diffraction patterns provides superior noise tol-
erance; however, they are not applicable to the local measurement model considered here. Indeed,
when the Wirtinger Flow algorithm is used with local measurements such as those described in
this paper, the noise tolerance significantly deteriorates. Fig. 2b illustrates this phenomenon by
plotting the reconstruction error in recovering a d = 128 length complex Gaussian test signal at
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40 dB SNR when using different numbers of measurements, D. Wirtinger flow, for example, re-
quires a large number of local measurements before returning accurate reconstructions. The wide
disparity in reconstruction accuracy between local and global measurements for Wirtinger Flow
illustrates the significant challenge in phase retrieval from local measurements. Furthermore, we
see that the BlockPR method proposed in this paper is more noise tolerant than Wirtinger Flow
for local measurements.
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Figure 3. Robustness to measurement noise – Phase Retrieval from deterministic
local correlation measurements.

Given the weaker performance of Wirtinger Flow with local measurements, we now restrict our
attention to the empirical evaluation of the proposed method (Alg. 1, as well as the post-processed
variant (with HIO+ER iterations)) against PhaseLift and alternating projection algorithms. Al-
though numerical simulations suggest that these methods work with local measurements, we note
that (to the best of our knowledge) there are no theoretical recovery or robustness guarantees for
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these methods and measurements. The PhaseLift algorithm was implemented as a trace regularized
least-squares problem using CVX [26, 25] – a package for specifying and solving convex programs in
Matlab. We consider two variants from the family of alternating projection methods – Gerchberg–
Saxton (sometimes referred to as the Error Reduction (ER) algorithm) and Hybrid Input-Output
(HIO). For both algorithms, the following two projections were utilized: (i) projection onto the
measured magnitudes, and (ii) projection onto the span of the measurement vectors {aj}Dj=1. This
formulation as well as other details and connections to convex optimization theory can be found
in [8]. For the ER and HIO implementations, the initial guess was set to be the all-zero vector.9

For the HIO implementation, as is popular practice (see, for example, [22]) every few (20) HIO
iterations were followed by a small number of (10) ER iterations, with the maximum number of
HIO+ER iterations limited to 600 – this choice of iteration count ensures convergence of the al-
gorithm (see Fig. 4) while comparing favorably with the computational cost (see Fig. 5b) of the
proposed BlockPR method. For the ER implementation, 6, 000 iterations were necessary to ensure
convergence.
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Figure 4. Reconstruction Error vs. Iteration Count for HIO+ER Implementation

We begin by presenting numerical results evaluating the robustness to measurement noise. Figs.
3a and 3b plot the error in reconstructing a d = 64 length complex vector x0 using D = 7d and
D = 15d local correlation-based phaseless measurements respectively. Note that this corresponds
to using δ = 4 (and the associated 2δ−1 = 7 masks) and δ = 8 (and the corresponding 2δ−1 = 15
masks) respectively. Moreover, the well-conditioned deterministic (and sparse) measurement con-
struction defined in Example 2 of Section 2 was utilized along with additive Gaussian measurement
noise. We see from Fig. 3 that the method proposed in this paper (denoted BlockPR in the figure)
performs reliably across a wide range of SNRs and compares favorably against existing popular
phase retrieval algorithms. When using a small number of measurements (as in Fig. 3a, and
modeling real-world situations), both variants of the proposed method – Alg. 1, as well as Alg. 1
post-processed using 60 HIO+ER iterations – outperform the ER algorithm by significant margins
and compare well with the popular HIO+ER algorithm. When more measurements are available
(as in Fig. 3b), the performance of the ER and HIO+ER algorithms approaches the performance of
the BlockPR variants proposed in this paper. In addition, the proposed methods also compare well
with the significantly more expensive PhaseLift reconstructions. We emphasize that the superior
performance of the proposed methods demonstrated here comes with rigorous theoretical recovery

9 We note that using a random starting guess does not change the qualitative nature of the empirical results.
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guarantees for local measurements – something that cannot be said of any of the other methods in
Fig. 3.

Additionally, Figs. 3c and 3d compare the performance of the HIO+ER algorithm at low SNRs
for problems sizes d = 128 and d = 256 respectively, with the various BlockPR implementations
– including one with the improved magnitude estimation procedure detailed in §6.1 (with s = 1

and using the average of the obtained D̃j′ block magnitude estimates). These figures demonstrate
the value of the magnitude estimation procedure from §6.1 at low SNRs over the HIO+ER post-
processing method utilized in the other figures (and over the HIO+ER algorithm); we defer a more
detailed study of this to future work.
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Figure 5. Performance Evaluation and Comparison of the Proposed Phase Re-
trieval Method (with Deterministic Local Correlation Measurements of Example 2,
§2 and Additive Gaussian Noise)

Next, Fig. 5a plots the reconstruction error in recovering a d = 64-length complex vector as
a function of the number of measurements used. This corresponds to using values of δ ranging
from 2 to 12 (and the associated 2δ − 1 masks). As with Fig. 3, the deterministic correlation-
based measurement constructions of Section 2 (Example construction 2) were utilized along with
an additive Gaussian noise model. Plots are provided for simulations at two noise levels – 20
dB and 40 dB. Comparing the performance of the two BlockPR variants, we observe that the
HIO+ER post-processing procedure provides improved reconstruction errors – with the margin of
improvement increasing when more measurements are available. We also notice that both variants
of BlockPR compare particularly well with the other algorithms (HIO+ER and PhaseLift) when
small numbers of measurements are available.

Finally, Fig. 5b plots the average execution time (in seconds) required to solve the phase retrieval
problem using D = d2d log2 de measurements. For comparison, execution times for the PhaseLift
and HIO+ER alternating projection algorithms are provided. We observe that both variants of
the proposed method are several orders of magnitude faster than the PhaseLift algorithm,10 and
between 2–5 times faster than the HIO+ER implementation. Moreover, the plot illustrates the

10 For computational efficiency and due to memory constraints, the PhaseLift plot in Fig. 5b was generated using
the TFOCS software package (http://cvxr.com/tfocs/) instead of the more computationally expensive CVX software
package.
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essentially FFT-time computational complexity (see §1.3) of the proposed method. Between the
two BlockPR variants, we see that there is a small trade-off between reduced execution time and
improved accuracy; one of the two variants may be more appropriate depending on the application
requirements.
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Figure 6. Numerical Evaluation of the Proposed Algorithm with the Ptycho-
graphic Measurements from Example 1 of §2

6.3. Experiments with Ptychographic Measurements from Example 1 of §2. We now
present a selection of empirical results demonstrating the accuracy, robustness, and efficiency of
the proposed method when using the ptychographic measurements from Example 1, §2 and observe
that, in this case, the comparison between the proposed algorithm and existing methods is similar
to that in section §6.2. Recall that (see Example 1 from §2 and §1.4 for details) this measurement

construction corresponds to a discretization of the ptychographic measurements
∣∣∣F [h̃ · Slf ](ω)

∣∣∣2 as

per (10), where f is the unknown specimen and h̃(t) = e−t/a
4√2δ−1 denotes the single, deterministic

illumination function (or mask). As before, δ defines the local support of the illumination function
and we consider a discretization involving 2δ − 1 Fourier modes and sample/specimen shifts of 1
unit or pixel (yielding a total of d shifts in the discrete problem formulation).

We begin with Fig. 6a, which demonstrates the relative performance of the BlockPR variants
described in [30] and this paper. More specifically, we plot the error in reconstructing a d = 128
length complex Gaussian test signal using D = d4d log2 de measurements at different added noise
levels. As with Fig. 2a, we plot results for three different variants of the BlockPR algorithm: (i)
Algorithm 1, (ii) Algorithm 1 with the HIO+ER post-processing procedure as described in §6.2,
and (iii) the implementation from [30]. We again observe (as in Fig. 2a) that the methods described
in this paper (which use eigenvector-based angular synchronization) are more accurate than that
detailed in [30] (which uses a greedy angular synchronization method), with the improvement in
performance being especially significant at low SNRs. Next, Fig. 6b studies the performance
of the proposed method(s) against three other popular phase retrieval algorithms – PhaseLift, the
Gerchberg–Saxton Error Reduction (ER) algorithm, and the Hybrid Input–Output (HIO) algorithm
(with implementation parameters identical to those in §6.2). As with Fig. 3a, we consider the
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reconstruction of a d = 64 length complex vector x0 using D = 7d measurements in the presence
of additive Gaussian noise. We observe that the methods proposed in this paper outperform
the ER algorithm and compare very well with the HIO+ER and (the significantly more expensive)
PhaseLift algorithms across a wide range of SNRs. Finally, we note that the execution time plot for
this ptychographic measurement construction is qualitatively and quantitatively similar to Fig. 5b
– the proposed methods are faster (by a factor of 2–5) than an equivalent HIO+ER implementation
and orders of magnitude faster than convex optimization approaches such as PhaseLift.

7. Concluding Remarks

In this paper new and improved deterministic robust recovery guarantees are proven for the
phase retrieval problem using local correlation measurements. In addition, a new practical phase
retrieval algorithm is presented which is both faster and more noise robust than previously existing
approaches (e.g., alternating projections) for such local measurements.

Future work might include the exploration of more general classes of measurements which are
guaranteed to lead to well conditioned linear systems of the type used to reconstruct X ≈ X0 in line
1 of Algorithm 1. Currently two deterministic measurement constructions are known (recall, e.g.,
Section 2) – it should certainly be possible to construct more general families of such measurements.

Other interesting avenues of inquiry include the theoretical analysis of the magnitude estimate
approach proposed in Section 6.1 in combination with the rest of Algorithm 1. Alternate phase
retrieval approaches might also be developed by using such local block eigenvector-based methods
for estimating phases too, instead of just using the single global top eigenvector as currently done
in line 3 of Algorithm 1.

Finally, more specific analysis of the performance of the proposed methods using masked/windowed
Fourier measurements (recall Section 1.5) would also be interesting. In particular, an analysis of the
performance of such approaches as a function of the bandwidth of the measurement mask/window
could be particularly enlightening. One might also consider extending the discrete results of this
paper to the analytic setting by, e.g., expanding on [35].
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Appendix A. Alternate Perturbation Bounds

In this section we present a simpler (and easier to derive), albeit weaker, perturbation result in
the spirit of Section 4, which is associated with the analysis of line 3 of Algorithm 1. Specifically,
we will derive an upper bound on minθ∈[0,2π] ‖x̃0 − eiθx̃‖2 (provided by Theorem 6), which scales

like d3. While this dependence is strictly worse than the one derived in Section 4, it is easier to
obtain and the technique may be of independent interest.

We will begin with a result concerning the top eigenvector of any Hermitian matrix.

Lemma 7. Let X0 =
∑d

j=1 νjxjx
∗
j be Hermitian with eigenvalues ν1 ≥ ν2 ≥ · · · ≥ νd and orthonor-

mal eigenvectors x1, . . . ,xd ∈ Cd. Suppose that X =
∑d

j=1 λjvjv
∗
j is Hermitian with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λd, orthonormal eigenvectors v1, . . . ,vd ∈ Cd, and ‖X − X0‖F ≤ η‖X0‖F for
some η ≥ 0. Then, (

1− |〈x1,v1〉|2
)
≤

4η2‖X0‖2F
(ν1 − ν2)2

.

Proof. An application of the sin θ theorem [16, 40] (see, e.g., the proof of Corollary 1 in [48]) tells
us that

sin (arccos (|〈x1,v1〉|)) ≤
2η‖X0‖F
|ν1 − ν2|

.

Squaring both sides we then learn that

(26)
(
1− |〈x1,v1〉|2

)
= sin2 (arccos (|〈x1,v1〉|)) ≤

4η2‖X0‖2F
(ν1 − ν2)2

,

giving us the desired inequality. �

The following variant of Lemma 7 concerning rank 1 matrices X0 is of use in the analysis of
many other phase retrieval methods, and can be used, e.g., to correct and simplify the proof of
equation (1.8) in Theorem 1.3 of [11].

Lemma 8. Let x0 ∈ Cd, set X0 = x0x
∗
0, and let X ∈ Cd×d be Hermitian with ‖X − X0‖F ≤

η‖X0‖F = η‖x0‖22 for some η ≥ 0. Furthermore, let λi be the i-th largest magnitude eigenvalue of
27



X and vi ∈ Cd an associated eigenvector, such that the vi form an orthonormal eigenbasis. Then

min
θ∈[0,2π]

‖eiθx0 −
√
|λ1|v1‖2 ≤ (1 + 2

√
2)η‖x0‖2.11

Proof. In this special case of Lemma 7 we have ν1 = ‖X0‖F = ‖x0‖22 and x1 := x0/‖x0‖. Choose
φ ∈ [0, 2π] such that 〈eiφx0,v1〉 = |〈x0,v1〉|. Then,

‖eiφx0 −
√
ν1v1‖22 = 2ν1 − 2ν1 · |〈x0/‖x0‖,v1〉| = 2ν1 − 2ν1 · |〈x1,v1〉|

≤ 2ν1 (1− |〈x1,v1〉|) (1 + |〈x1,v1〉|)(27)

= 2ν1
(
1− |〈x1,v1〉|2

)
≤ 8η2‖X0‖F

where the last inequality follows from Lemma 7 with ν1 = ‖X0‖F = ‖x0‖22. Finally, by the triangle
inequality, Weyl’s inequality (see, e.g., [28]), and (27), we have

‖eiφx0 −
√
|λ1|v1‖2 ≤ ‖eiφx0 −

√
ν1v1‖2 + ‖

√
ν1v1 −

√
|λ1|v1‖2

≤ 2
√

2 · η
√
ν1 +

∣∣∣√ν1 −√|λ1|∣∣∣
≤ 2
√

2 · η
√
ν1 +

|ν1 − λ1|√
ν1 +

√
|λ1|

≤ 2
√

2 · η
√
ν1 +

ην1√
ν1 +

√
|λ1|

≤ (1 + 2
√

2)η
√
ν1.

The desired result now follows. �

We may now use Lemma 7 to produce a perturbation bound for our banded matrix of phase
differences X̃0 from (6).

Theorem 6. Let X̃0 = Tδ(x̃0x̃
∗
0) where |(x̃0)i| = 1 for each i. Further suppose X̃ ∈ Tδ(Hd) has

x̃ as its top eigenvector, where ||x̃||2 =
√
d. Suppose that ‖X̃0 − X̃‖F ≤ η‖X̃0‖F for some η > 0.

Then, there exists an absolute constant C ∈ R+ such that

min
θ∈[0,2π]

‖x̃0 − eiθx̃‖2 ≤ C
ηd3

δ
5
2

.

Proof. Recall that the phase vectors x̃ and x̃0 are normalized so that ‖x̃‖2 = ‖x̃0‖2 =
√
d. Com-

bining Lemmas 2 and 7 after noting that ‖X̃0‖2F = d(2δ − 1) we learn that

(28)

(
1− 1

d2
|〈x̃0, x̃〉|2

)
≤ C ′η2

(
d

δ

)5

for an absolute constant C ′ ∈ R+. Let φ ∈ [0, 2π) be such that Re
(
〈x̃0, e

iφx̃〉
)

= |〈x̃0, x̃〉|. Then,

‖x̃0 − eiφx̃‖22 = 2d− 2 Re
(
〈x̃0, e

iφx̃〉
)

= 2d

(
1− 1

d
|〈x̃0, x̃〉|

)
≤ 2d

(
1− 1

d2
|〈x̃0, x̃〉|2

)
.

Combining this last inequality with (28) concludes the proof. �

11It is interesting to note that similar bounds can also be obtained using simpler techniques (see, e.g., [29]).
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