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Abstract—We present an algorithm which is closely related
to direct phase retrieval methods that have been shown to
work well empirically [1], [2] and prove that it is guaranteed
to recover (up to a global phase) a large class of compactly
supported smooth functions from their spectrogram measure-
ments. As a result, we take a first step toward developing a
new class of practical phaseless imaging algorithms capable of
producing provably accurate images of a given sample after it
is masked by just a few shifts of a fixed periodic grating.

Index Terms—phase retrieval, phaseless imaging, spectro-
gram inversion, coded diffraction patterns, Short Time Fourier
Transform (STFT) magnitude measurements.

I. INTRODUCTION

Motivated by the plethora of phaseless imaging applica-
tions that involve the inversion of spectrogram measurements
(see, e.g., [3]), we consider the recovery of a smooth function
f : R → C with support contained in [−π, π] from a finite
set of continuous spectrogram measurements of the form

Yω,` :=

∣∣∣∣∫ ∞
−∞

f(x)m

(
x− 2π

L
`

)
e
−ixωdx

∣∣∣∣2 . (1)

Here m is a known trigonometric polynomial, and we use
d integer frequencies ω and L shifts 2π

L `. In this paper, we
present an algorithm that will reconstruct f , up to a global
phase multiple, by approximating the d lowest frequency
Fourier series coefficients of f restricted to [−π, π].

A. Notation

Let k ≥ 4. Let d be odd and δ be even with 4δ ≤ d.

Let ρ ≤ δ be even, L divide d, and L = ρ + κ for some
2 ≤ κ ≤ ρ. For n odd, let [n]c :=

[
1−n

2 , n−1
2

]
∩ Z be the

set of n consecutive integers centered at the origin, and let

Ω := [d]c, B := [d− δ]c and L := [L]c.

For vectors x and y, we let x ◦ y and x
y be their compo-

nentwise product and quotient, and for ` ∈ Z, we let S`
be the circular shift operator defined by (S`x)p = xp+` for
x = (xp)p∈Ω (where the addition p + ` is interpreted to
mean the unique element of Ω which is equivalent to p+ `

modulo d). We let Fd be the d × d Fourier matrix with
entries (Fd)i,j = e

−2πiij
d for i, j ∈ Ω, and similarly let FL

be the L×L Fourier matrix with indexes in L. We will use
C to denote an arbitrary constant which depends only on f
and m (and in particular does not depend on d).

B. Main Result

Let f : R→ C be a Ck-smooth function, k ≥ 4, with

supp(f) ⊆ [−π, π].

For x ∈ [−π, π], we will write f(x) as its Fourier series

f(x) =
∑
n∈Z

f̂(n)einx,

where f̂(n) = 1
2π

∫ π
−π f(x)e−inxdx. We will let

Dn := max
|n′−n|<κ/2

|f̂(n′)|,

and assume that Dn ≥ Dn′ whenever |n| ≤ |n′|.

Remark 1. Under this assumption, for all |a| < |n|, there
exists n′ such that |a− n′| < κ/2 and |f̂(n′)| ≥ |f̂(n)|.

Let m(x) be a trigonometric polynomial of the form

m(x) =

ρ/2∑
p=−ρ/2

m̂(p)eipx, (2)

and let Y = (Yω,`)ω∈Ω,`∈L be a d× L matrix of measure-
ments with entries defined as in (1). The central focus of
this paper is Algorithm 1 which allows one to reconstruct
the signal f(x) from Y along with the following theorem
guaranteeing its convergence as d→∞.

Theorem 1. Let µ be the mask dependent constant defined
below in (6). If µ > 0, then the output of Algorithm 1, fe(x),

satisfies

min
θ∈[0,2π]

‖eiθf(x)− fe(x)‖L2(−π,π)

≤C

(
ρ1/2δ1/4

µ1/2

(
1

d

)(k−3)/2

+

(
1

d

)(k−2)/2
)
.
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Remark 2. By imitating the arguments of [8], Proposition
4.1, one may check that it is relatively simple to construct
masks such that µ is strictly positive.

C. Related Work

To the best of our knowledge, Algorithm 1 presented
here1 is the first numerical method theoretically guaranteed
to accurately recover a complex-valued function f as above
up to a constant phase multiple from STFT magnitude mea-
surements of the form (1). Perhaps the most closely related
result to ours is that of Thakur [4] who gives an algorithm
for the reconstruction of real-valued bandlimited functions
up to a global sign. Gröchenig [5] also considers/surveys
similar results in shift-invariant spaces. Other related work
includes that of Alaifari et al. [6] which proves (among other
things) that one can not hope to stably recover a periodic
function up to a single global phase using a trigonometric
polynomial mask of degree ρ/2 as done below unless its
Fourier series coefficients do not vanish on any ρ consecutive
integer frequencies in between two other frequencies with
nonzero coefficients. This helps motivate the quantity Dn as
well as the assumption that Dn ≥ Dn′ whenever |n| ≤ |n′|.
See [7] for similar considerations in the discrete setting.

II. DISCRETIZATION

Let PBf be the partial Fourier series

PBf(x) :=
∑
n∈B

f̂(n)einx,

and let T := (Tω,`)ω∈Ω,`∈L denote the matrix of measure-
ments obtained by replacing f with PBf in (1), i.e.,

Tω,` :=

∣∣∣∣∫ π

−π
PBf(x)m

(
x− 2π

L
`

)
e
−ixωdx

∣∣∣∣2 . (3)

Our method is based on showing that Y is well-
approximated by T and by representing PBf(x) and m(x)

with vectors x = (xp)p∈Ω and y = (yp)p∈Ω defined by

xp := PBf

(
2πp

d

)
and yp := m

(
2πp

d

)
.

We will also define u = (up)p∈Ω and v = (vp)p∈Ω by

up := f̂(p)1p∈B and vp := m̂(p)1|p|≤ρ/2, (4)

where 1p∈B and 1|p|≤ρ/2 are standard indicator functions.
We note that the Fourier transforms of x and y satisfy

Fdx =: x̂ = du and Fdy =: ŷ = dv. (5)

Let µ be a mask-dependent constant defined by

µ := inf
d≥ρ

min
|p|<κ,q∈Ω

|Fd (v ◦ Spv)q)| =: inf
d∈N

µd. (6)

1Numerical results available at https://bitbucket.org/charms/blockpr

We note that in light of (5) we have

νd := min
|p|<κ,q∈Ω

∣∣∣Fd (ŷ ◦ Spŷ)q

)∣∣∣ = d2µd ≥ d2µ. (7)

The following lemma shows that the integral in (3) can be
replaced by a discrete sum. It is proved by expanding PBf
and m as trigonometric polynomials and using the fact that

2π
∑
p∈Ω

e
2πipj/d = d

∫ π

−π
eijxdx ∀j ∈ Ω.

Lemma 1. Let ` ∈ L, ω ∈ Ω, and let ˜̀= 2π`
L . Then,∫ π

−π
PBf(x)m

(
x− ˜̀) e−ixωdx =

2π

d

∑
p∈Ω

xpyp−` dL
e
−2πiωp/d.

We may use Lemma 1 to prove the following result which
shows that T converges to Y as d→∞.

Lemma 2. Let E := Y −T. Then

‖E‖∞ ≤ Cρ
(

1

d

)k
, and (8)

Eω,` = 0 whenever |ω| ≤ d− 1

2
− δ. (9)

Proof. For ω ∈ Ω and ` ∈ L, let

Mω,` :=

∫ π

−π
f(x)m

(
x− 2π

d
`

)
e
−ixωdx, and

Uω,` :=

∫ π

−π
PBf(x)m

(
x− 2π

d
`

)
e
−ixωdx.

It suffices to show that

|Uω,`| ≤ C (10)

and |E′ω,`| ≤ Cρ
(

1

d

)k
. (11)

Then, letting E′ω,` := Mω,` − Uω,`, we will have

|Eω,`| = ||Mω,l|2 − |Uω,l|2|
= (|Mω,l|+ |Uω,l|)||Mω,l| − |Tω,l||
≤ (2|Uω,l|+ |E′ω,l|)|E′ω,l|

≤ C

(
1 + ρ

(
1

d

)k)
ρ

(
1

d

)k
≤ Cρ

(
1

d

)k
.

Since m(x) is a trigonometric polynomial, we see

‖y‖∞ ≤ ‖m‖∞ ≤ C,

and since f is C2-smooth and compactly supported, we have

‖x‖∞ ≤ ‖PBf‖∞ ≤
∑
n∈Z
|f̂(n)| ≤ C.

Therefore, using Lemma 1, we see that

|Uω,l| =

∣∣∣∣∣∣2πd
∑
p∈Ω

xpyp−` dL
e
−2πiωp/d

∣∣∣∣∣∣ ≤ C, (12)

971



and so (10) follows. To prove (11), we note that

f(x)− PBf(x) =
∑
n/∈B

f̂(n)einx,

and therefore

E′ω,l =

∫ π

−π
(f(x)− PBf(x))m

(
x− 2π`

L

)
e
−iωxdx

=
∑
n/∈B

ρ/2∑
p=−ρ/2

f̂(n)m̂(p)e−
2πip`
L

∫ π

−π
e
i(n+p−ω)xdx.

The inner integral is zero unless ω = n+ p. Therefore,

|E′ω,l| ≤ 2π
∑

n/∈B,|ω−n|≤ρ/2

∣∣∣f̂(n)
∣∣∣ |m̂(ω − n)|

≤ 2π sup
n/∈B

{
|f̂(n)|

}
ρ sup
|n|≤ρ/2

|m̂(n)|

≤ Cρ
(

1

d

)k
,

where we used the facts f̂(n) = O(n−k) and that n > d
4

for all n /∈ B. This proves (8). Equation (9) follows from
noting that the condition ω = n + p can never hold when
n /∈ B, |ω| ≤ d−1

2 − δ and |p| ≤ ρ/2. �

III. WIGNER DECONVOLUTION

In this section, we apply a discrete, aliased Wigner de-
convolution approach, similar to Section 3 of [8], to solve
for a portion of the Fourier autocorrelation matrix x̂x̂∗. It
follows from (12) that

Tω,` =
4π2

d2

∣∣∣∣∣∣
∑
p∈Ω

xpyp−` dL
e
−2πiωp/d

∣∣∣∣∣∣
2

.

Up to a scaling factor of 4π2/d2, these measurements
coincide with the measurements considered in [8].

Let T̃ := FLT
TFd

T , and let Ẽ := FLE
TFd

T . Since
1√
d
Fd and 1√

L
FL are unitary, we may use Lemma 2 to see

‖Ẽ‖F ≤
√
dL‖E‖F ≤

√
2dδL‖E‖∞ ≤ CLρδ1/2

(
1

d

)k−1/2

.

(13)
It follows from Theorem 4, Equation 3.2, of [8] that

T̃`,ω − Ẽ`,ω =

4π2L

d4

∑
p∈[ dL ]

c

(
Fd

(
x̂ ◦ SpL−`x̂

))
ω

(
Fd

(
ŷ ◦ S`−pLŷ

))
ω
,

where, as in Section I, (S`x)p = xp+` for all ` ∈ Z. By
construction, we have that supp(ŷ) ⊆ [ρ+ 1]c . Therefore,
if 1− κ ≤ ` ≤ κ− 1, we may use the same reasoning as in
the proof of Lemma 10 of [8], to see that ŷ ◦ S`−pLŷ = 0

except for when p = 0. Therefore,

T̃`,ω−Ẽ`,ω =
4π2L

d4

(
Fd

(
x̂ ◦ S−`x̂

))
ω

(
Fd

(
ŷ ◦ S`ŷ

))
ω
.

Changing variables `→ −` we see that(
Fd

(
x̂ ◦ S`x̂

))
ω

=
d4

4π2L

(
T̃−`,ω − Ẽ−`,ω

(Fd(ŷ ◦ S−`ŷ))ω

)
,

and so

x̂ ◦ S`x̂ =
d4

4π2L
Fd
−1

(
T̃−` − Ẽ−`

(Fd(ŷ ◦ S−`ŷ))

)
, (14)

where Mj denotes the j-th column of a matrix M and we
define vector division componentwise.

Let Tκ : Cd×d → Cd×d be the restriction operator

Tκ(M)ij =

{
Mi,j if |i− j| < κ

0 otherwise
.

We may rewrite (14) in matrix form as

Tκ(x̂x̂∗) = X + N, (15)

where the matrix X = (Xi,j)i,j∈Ω has entries defined by

Xi,j =

 d4

4π2L

(
Fd
−1
(

T̃i−j

(Fd(ŷ◦Si−j ŷ))

))
i

if |i− j| < κ

0 otherwise
,

(16)
and N is defined similarly using Ẽ in place of T̃. Let R =

(Ri,j)i∈Ω,j∈[2κ−1]c be the d× (2κ− 1) matrix with entries
Ri,j = Ni,i+j so that the columns of R are the diagonal
bands of N within κ of the main diagonal. By (7), we may
bound the `2-norm of each column of R by

‖Rj‖2 =

∥∥∥∥∥ d4

4π2L
Fd
−1

(
Ẽ−j

(Fd(ŷ ◦ S−jŷ))

)∥∥∥∥∥
2

≤ d7/2

4π2Lνd
‖Ẽ−j‖2 ≤

d3/2

4π2Lµ
‖Ẽ−j‖2.

Since N is a banded matrix, (13) implies

‖N‖F = ‖R‖F ≤
d3/2

4π2Lµ
‖Ẽ‖F ≤ C

ρδ1/2

µ

(
1

d

)k−2

.

(17)
Dividing both sides of (15) by d2, using (5), and applying
the Hermitianizing operator H(M) = 1

2 (M + M∗) yields

Tκ(uu∗) = A + Ñ. (18)

where A = d−2H(X), and Ñ := d−2H(N). By (17), and
the triangle inequality, we have

‖Ñ‖F ≤ C
ρδ1/2

µ

(
1

d

)k
. (19)

IV. ANGULAR SYNCHRONIZATION

In this section, we will use a greedy angular synchroniza-
tion approach to recover the Fourier coefficients of f. For
each n ∈ B, the greedy algorithm, Algorithm 2, outputs a
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sequence {n`}b`=0 where n0 = arg maxn∈B an and nb = n.

Given that sequence, we let

αn :=
b−1∑
l=0

arg
(
An`+1,n`

)
.

To understand this definition, let

θ0 := arg(f̂(n0)) and τn :=

b−1∑
l=0

arg
(
(uu∗)n`+1,n`

)
.

Then, we have τn = arg
(
f̂(n)

)
− θ0, and therefore

e
−iθ0 f̂(n) = |f̂(n)|eiτn

for all n ∈ B. (Note that n0 does not depend on n.) Since
A is a noisy approximation of uu∗, we intuitively view
αn as a noisy approximation of τn (up to a phase shift θ0).
Lemma 3 will show that this intuition is correct when |f̂(n)|
is sufficiently large. Due to [9, Lemma 3], for all n ∈ B we
have ∣∣∣√|An,n| − |f̂(n)|

∣∣∣2 ≤ 3‖Ñ‖∞. (20)

Therefore, we set an :=
√
|An,n| and define the output of

Algorithm 1 to be the trigonometric polynomial

fe(x) :=
∑
n∈B

ane
iαne

inx.

The following lemma shows that αn is indeed a good
approximation of τn when |f̂(n)| is sufficiently large. Its
proof is nearly identical to the proof of [9, Lemma 4], but
uses Lemma 4 stated below in place of the “flat vector”
condition considered there.

Lemma 3. Let Lf be the set

Lf = {n ∈ B : |f̂(n)|2 ≥ 48‖Ñ‖∞}.

Then, for all n ∈ Lf

|eiτn − e
iαn | ≤ 2πd‖Ñ‖∞

|f̂(n)|2
.

As mentioned above, the key to modifying the proof of
[9, Lemma 4] in order to prove Lemma 3 is the following
lemma, which shows that Algorithm 2 will only select entries
n` corresponding to large Fourier coefficients.

Lemma 4. Let n ∈ Lf , and let {n`}b`=0 be the sequence
output by Algorithm 2. Then,

|f̂(n`)| ≥
|f̂(n)|

2
for all 0 ≤ ` ≤ b.

Proof. When ` = b, the claim is immediate. For 0 ≤ ` ≤
b− 1, we have an` = maxm∈I` am for some interval I` of
length 2κ, which is centered at some |a| ≤ |n|. Therefore,

letting ε =

√
3‖Ñ‖∞, we see that by (20) and Remark 1,

|f̂(n`)| ≥ max
m∈I`

am − ε ≥ max
m∈I`

|f̂(m)| − 2ε ≥ |f̂(n)| − 2ε.

The result follows by noting that ε < |f̂(n)|
4 for n ∈ Lf .�

Together, (20) and Lemma 3 allow us to prove the
following lemma showing that fe(x) approximates PBf(x).

Lemma 5. The output of Algorithm 1 satisfies∥∥∥e−iθ0PBf(x)− fe(x)
∥∥∥
L2(−π,π)

≤ C d 3
2

√
‖Ñ‖∞.

Proof. Recall the vector u defined in (4) and, for n ∈ Ω,

let

u′n := ane
iαn and u′′n := |un|eiαn .

By construction, for all n /∈ B we have an = un = 0. There-
fore the supports of u′ := (u′n)n∈Ω and u′′ := (u′′n)n∈Ω are
contained in B. By Parseval’s identity, we see∥∥∥e−iθ0PBf(x)−

∑
n∈B

ane
iαne

inx
∥∥∥
L2(−π,π)

=
∥∥∥e−iθ0

∑
n∈B

une
inx −

∑
n∈B

u′ne
inx
∥∥∥
L2(−π,π)

≤
√

2π
∥∥e−iθ0u− u′

∥∥
`2

≤
√

2π
∥∥e−iθ0u− u′′

∥∥
`2

+
√

2π‖u′′ − u′‖`2
=:I1 + I2.

Using Lemma 3 and the fact that |eiτn−eiαn | ≤ 2, we have

I2
1 = 2π

∑
n∈B
|un|2|eiτn − e

iαn |2

≤ C
∑

n∈B\Lf

|un|2 + C
∑
n∈Lf

d2 ‖Ñ‖2∞ |f̂(n)|−2

≤ C d ‖Ñ‖∞ + C
∑
n∈Lf

d2‖Ñ‖∞

≤ C d3‖Ñ‖∞.

To estimate I2, we recall (20) and note

I2
2 = 2π

∑
n∈B

∣∣∣|un| − an∣∣∣2 ≤ Cd‖Ñ‖∞. �

We now use Lemma 5 as well as the uniform convergence
of the partial Fourier series PBf to prove Theorem 1.
Proof. [The Proof of Theorem 1] By the triangle inequality,

min
θ∈[0,2π]

∥∥∥∥∥eiθf(x)−
∑
n∈B

ane
iαne

inx

∥∥∥∥∥
L2(−π,π)

≤ ‖f − PBf‖L2(−π,π)

+
∥∥∥e−iθ0PBf(x)−

∑
n∈B

ane
iαne

inx
∥∥∥
L2(−π,π)

,

where θ0 = arg(f̂(n0)). By (19) and Lemma 5, we have

∥∥∥e−iθ0PBf(x)− fe(x)‖2 ≤ C
ρ1/2δ1/4

µ1/2

(
1

d

)(k−3)/2

.
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To bound the first term we see that by Parseval’s identity,
the fact that d > 4δ, and the fact that |f̂(n)| = O(d−k)

‖f − PBf‖22 = 2π
∑
n/∈B

|f̂(n)|2 ≤ C
∑
n≥ d4

1

n2k
≤ C 1

d2k−1
.�

Algorithm 1 Wigner Deconvolution and Angular Syn-
chronization for Bandlimited Masks
Inputs

1) Matrix Y = (Yω,`)ω∈Ω,`∈L of spectogram
measurements defined as in (1).

2) Trigonometric polynomial mask of the form (2).

Steps
1) Define vector y = (yp)p∈Ω by yp = m

(
2πp
d

)
.

2) Let κ = L− ρ, and for 1− κ ≤ ` ≤ κ− 1 estimate

Fd

(
x̂ ◦ S`x̂

)
≈ d4

4π2L

(
(FLY

TFd
T )−`

(Fd(ŷ ◦ S−`ŷ))

)
.

3) Invert the Fourier transforms above to recover esti-
mates of the vectors x̂ ◦ S`x̂.

4) Organize these vectors into a banded matrix, X de-
scribed as in (16).

5) Hermitianize X and divide by d2 to obtain the matrix
A = (Ai,j)i,j∈Ω as described in (18).

6) Estimate |f̂(n)| ≈ an =
√
|An,n|.

7) For n ∈ B, choose {n`}b`=0 according to Algorithm 2.
8) Approximate

arg
(
f̂(n)

)
≈ αn =

b−1∑
`=0

arg
(
An`+1,n`

)
.

Output
An approximation of f given by

fe(x) =
∑
n∈B

ane
iαne

inx.

.

V. FUTURE WORK

The work here shows that, under suitable regularity as-
sumptions, we may recover a continuous signal f(x) from
a d× L matrix of phaseless measurements. We believe that
this paper naturally opens up several research directions for
future work. Firstly, one might replace the assumption that
m(x) is a trigonometric polynomial with the assumption
that m(x) is compactly supported in space. This would lead
to a measurement setup closely related to ptychographic
imaging. Also, in [8], it is shown that in the discrete setting,
a discrete Wigner deconvolution approach can be applied
to a K × L measurement matrix for some K < d and
that this approach is robust to additive noise. It is likely

Algorithm 2 Greedy Entry Selection
Inputs

1) Vector of amplitudes a = (an)n∈Ω, an =
√
|An,n|.

2) Entry n ∈ B.
Steps

1) Choose n0 = arg maxn∈B an.
2) Let b = 0.

3) While: |n− nb| > κ/2

4) If: n > nb, let nb+1 ← arg maxnb<m<nb+κ am
5) If: n < nb, let nb+1 ← arg maxnb−κ<m<nb am
6) b← b+ 1

7) nb ← n

Output
A sequence {n`}b`=0, |n`+1 − n`| < κ/2, nb = n, b ≤ d.

that analogous techniques can be applied in the continuous
setting when the matrix Y is subsampled in frequency and
corrupted by additive noise. Lastly, one might also extend
these results to functions of two variables f(x, y).
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