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Abstract

The concentration method of edge detection was developed to compute

the locations and values of jump discontinuities in a piecewise-analytic

function from its first few Fourier series coefficients. The accuracy and

characteristic features of the resulting jump approximation depend on

Fourier space “filter” factors known as concentration factors. In this pa-

per, we provide a flexible, iterative framework for the design of these

factors. Previously devised concentration factors are shown to be the so-

lutions of specific problem formulations within this new framework. We

also provide sample formulations of the procedure applicable to the de-

sign of concentration factors for data with missing spectral bands. Sev-

eral illustrative examples are used to demonstrate the capabilities of the

method.

1 Introduction

Detection and characterization of abrupt changes in signals are important in
many signal processing applications. A sudden change in the amplitude of a
one-dimensional signal often indicates a significant transition in the state of the
signal source, such as catastrophic failure of a component in a mechanical or
electrical system. Accurate estimation of the time of the leading edge of an emit-
ted radar pulse at multiple distributed receivers provides a means for passive
localization of the emitter. In image processing and other multi-dimensional
applications, detection of sharp transitions is valuable for segmentation and de-
scriptors of edges and other abrupt phenomena in data are often used as features
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in pattern recognition. In the solution of PDEs using spectral methods, iden-
tification of jump discontinuities and associated processing can greatly improve
the accuracy of the solutions.

In some of these cases, we may be required to identify jumps in the data
given measurements in the Fourier domain. This is the case in applications such
as magnetic resonance imaging (MRI) and synthetic aperture radar (SAR). The
underlying physics of these problems models the signal acquisition process as the
collection of samples of the Fourier transform of the specimen being imaged. The
detection of jumps from such data is a challenging problem, since Fourier data
constitutes a global representation, from which we seek accurate representations
of a local phenomenon.

The concentration method of edge detection, [1], was devised with exactly
this in mind. It computes an approximation to what is known as the jump func-
tion (defined in Section 2) from the first 2N +1 Fourier series coefficients of the
function using a partial Fourier sum and Fourier space “filter” factors known as
concentration factors. The characteristic properties of the resulting approxima-
tion, including the behaviors in the neighborhood of jumps and smooth regions
away from jumps, are determined by these factors. In this paper, we present
an iterative framework for the design of these factors. Admissible concentration
factors are shown to be generated by solving an iterative, and typically con-
vex program. Some of the traditional concentration factors, originally derived
in [1,2], are shown to be the solutions of particular problem formulations within
our new framework. In addition, this framework admits the design of factors
satisfying specific constraints with regard to the resulting jump approximation.
We also present the application of this framework to the design of concentration
factors with missing or banded spectral data. Unavailability of data in some fre-
quency bands is common in practice due to several causes, including limitations
in sensor capability, the presence of strong incidental or intentional narrowband
interference, and communication link restrictions or dropouts.

The rest of the paper is organized as follows: Section 2 summarizes the
concentration edge detection method, including the notion of a jump function,
concentration factors and their admissibility conditions. A few prototypical
families of concentration factors are tabulated and their performance on test
functions illustrated. The notion of low and high order edge detectors is also
briefly explained. Section 3 starts by providing a summary of previous and re-
lated work on the topic, before introducing our new framework of concentration
factor design. This section contains several sample problem formulations that
illustrate the flexibility of the framework, while also serving to associate some
of the traditional concentration factors with specific iterative formulations. Sec-
tion 4 examines the application of the framework to missing or banded spectral
data. We give some concluding comments and avenues for future investigation
in Section 5.
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2 The Concentration Edge Detection Method

Let f be a 2π-periodic piecewise-smooth function1 defined in [−π, π). We will
assume that we are given the Fourier series coefficients

f̂(k) =
1

2π

∫ π

−π

f(x)e−ikxdx, k = −N, ..., N. (1)

Definition 1. (Jump Function) Let the right and left-hand limits of the func-
tion, f(x+) and f(x−), be defined at every point x in the domain. The jump
function associated with f and denoted by [f ] is defined as the difference between
the right and left hand limits of the function at every point x; i.e.,

[f ](x) := f(x+)− f(x−). (2)

Note that the jump function is non-zero only at a jump discontinuity, where
it takes the value of the jump.

Given the first 2N + 1 Fourier coefficients of a piecewise-smooth function,
the concentration edge detection method, [1, 2], computes an approximation to
the jump function using a partial sum of the form

Sσ
N [f ](x) = i

∑

|k|≤N

f̂(k) sgn(k)σ

( |k|
N

)

eikx. (3)

The convergence properties of the jump approximation depend on the choice of

factors σ(η) = σ
(

|k|
N

)

, which are known as concentration factors. As discussed

in [2], these factors satisfy the following admissibility conditions:

1.

N
∑

k=1

σ

(

k

N

)

sin(kx) is odd

2.
σ(η)

η
∈ C2(0, 1)

3.

∫ 1

ǫ

σ(η)

η
→ −π, where ǫ = ǫ(N) > 0 is small.

It is illustrative to note that the equivalent physical-space representation of the
concentration sum in (3) is the convolution of f with a concentration kernel Cσ

N

defined as

Cσ
N (x) := i

∑

|k|≤N

sgn(k)σ

( |k|
N

)

eikx. (4)

1We restrict our attention to real-valued functions, since practical applications typically
demand the identification and characterization of real-valued jumps.
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Thus (3) is equivalent to

Sσ
N [f ](x) = (f ∗ Cσ

N )(x). (5)

The admissibility conditions simply state that this kernel is required to be odd
and suitably normalized in order to approximate the jump function. A certain
amount of smoothness is also required as embodied in condition 2. If these
conditions are satisfied, Sσ

N [f ] “concentrates” at the singular support of f and
the jump approximation obeys the concentration property, [5, Theorem 2.3],

Sσ
N [f ](x) = [f ](x) +







O
(

logN
N

)

d(x) . logN
N

O
(

logN
(Nd(x))s

)

d(x) ≫ 1
N .

(6)

Here, d(x) denotes the distance between a point in the domain and the nearest
discontinuity, while s > 0 depends on the concentration factor chosen. Use of a
higher-order2 edge detector results in a larger value of s as compared to using
a lower-order edge detector. Table 1 lists a selection of concentration factors
introduced in [1, 2], while Figure 1 plots these factors in the Fourier domain.

Factor Expression Remarks

Trigonometric σG(η) =
π sin(πη)

Si(π)
Si(π) =

∫ π

0

sin(x)

x
dx

Polynomial σ
p
P (η) = pπηp p is the order of the factor

α is the order

Exponential σE(η) = C η e(
1

αη(η−1) ) C is a normalizing constant

C =
π

∫ 1− 1
N

1
N

exp
(

1
ατ(τ−1)

)

dτ

Table 1: Examples of concentration factors

Each concentration factor generates a unique oscillatory response in the im-
mediate vicinity and away from jumps. We will refer to this as the jump response
associated with a concentration factor.

Let σ(η) be an admissible concentration factor. Let r(x) denote the unit
ramp function, with a corresponding jump function [r](x).

r(x) =

{

−x−π
2π x < 0
π−x
2π x > 0

, [r](x) =

{

1 x = 0

0 else.

Definition 2. (Jump Response) The jump response associated with a concen-

tration factor σ, denoted by W σ,N
0 (x), is defined as the jump function approxi-

2The notion of low and high order edge detectors and their characteristic features will be
discussed below.
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Figure 1: Concentration factors plotted in Fourier space, N = 128

mation of the unit ramp as generated by the concentration sum (3). i.e.,

W
σ,N
0 (x) := Sσ

N [r](x) = i
∑

|k|≤N

r̂(k) sgn(k)σ

( |k|
N

)

eikx

=
1

2π

∑

0<|k|≤N

σ
(

|k|
N

)

|k| eikx. (7)

The final equation is obtained by substituting the Fourier coefficients of the
ramp function,

r̂(k) =

{

1
2πik k 6= 0

0 k = 0.

The jump responses of each of the concentration factors listed in Table 1
are plotted in Figure 2. These plots serve to illustrate the “concentration” of
the jump approximation at the jump location. Note also the non-uniform con-
vergence to the true jump function, as stated in (6). The different orders of
convergence away from the jump for each of the concentration factors, param-
eterized by s in (6), is also seen from the plots. For example, the polynomial
concentration factor shows slowly decaying oscillations for |x| > 0, while the
exponential factor shows a vanishing response away from the jump.

As evidence of the use of this method on more general functions, consider
the jump approximations of the two test functions in (8) and (10), plotted in
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Figure 2: Characteristic responses of different concentration factors to a ramp
function (N = 32)

Figure 3 (a) and (b) respectively. The true jump functions are provided for
reference in (9) and (11) respectively.

f1(x) =



























3
2 − 3π

4 ≤ x < −π
2

7
4 − x

2 + sin(x− 1
4 ) −π

4 ≤ x < π
8

11
4 x− 5 3π

8 ≤ x < 3π
4

0 else.

(8)

[f1](x) =



























































3
2 x = − 3π

4

− 3
2 x = −π

2

14+π
8 − sin

(

π+1
4

)

≈ 1.28 x = −π
4

sin
(

2−π
8

)

− 28−π
16 ≈ −1.70 x = π

8

33π
32 − 5 ≈ −1.76 x = 3π

8

5− 33π
16 ≈ −1.48 x = 3π

4

0 elsewhere.

(9)

f2(x) =















sin(6x) − 5π
6 ≤ x < 0

1
πe

−2x(π − x) x ≥ 0

0 x < − 5π
6 .

(10)

[f2](x) =

{

1 x = 0

0 else.
(11)

The jump function approximation of f1(x) was generated using the trigono-
metric factor while the trigonometric and exponential jump function approxima-
tions of f2(x) are plotted. Note that the trigonometric jump function approxi-
mation of f2(x) has a significant non-zero value in the smooth interval (−π, 0).
This is an example of a low-order edge detector acting on a function with large
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variation. In comparison, the response using the exponential (high-order) fac-
tor contains minimal spurious responses in smooth regions3 at the expense of
some additional oscillatory behavior in the immediate vicinity of a discontinu-
ity. Moreover, since the function has significant variation, a larger number of
Fourier modes (N = 100) are necessary to recover a well resolved jump function
approximation.
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Figure 3: Jump approximations of two test functions

3 Concentration Factor Design

We start this section by providing a brief summary of previous and related work
on this topic. Since the initial development of the concentration edge detection
method in [1, 2], several works have addressed the improvement in the resolu-
tion of jump approximations. A survey of related literature reveals two broad
approaches – enhancements and reformulations of the concentration method
itself, and design of new families of concentration factors. Enhancements to
the concentration method include nonlinear post-processing procedures such as
enhancement of scales, [2], which separates regions (or scales) of jumps from
regions of smoothness by raising the jump approximation to a power. As indi-
cated previously and plotted in Figs. 2 and 3, the different concentration factors
are characterized by their behavior in the vicinity of a jump and in smooth re-
gions. Use of a multitude of jump responses in conjunction with the minmod
operator is treated in [3]. This results in fewer oscillations near a jump as well
as removal of spurious responses in smooth regions. Iterative formulations of
the concentration method with connections to the recently developed theory of
compressive sensing, [8, 9] were introduced in [7]. Here, pre-existing families of
concentration factors were utilized in sparsity-enforcing formulations of the con-
centration method to yield accurate approximations to the jump function. This

3The small non-zero oscillatory response in the vicinity of x = − 5π
6

is due to a discontinuity
in the derivative of f2(x).
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method also allows for the detection of edges from highly incomplete Fourier
measurements.

Select literature on the design of new concentration factors can also be found.
For example, a family of concentration factors known as matching waveform
concentration factors was developed in [4]. These look for correlations in the
concentration jump approximation with the jump response of the concentration
factor, and results in approximations with reduced oscillatory behavior. The
design of concentration factors for noisy data is treated in [5]. The approach
in [5] is based on separating the Fourier data into scales of “smoothness”, noise
and the jump discontinuity. An alternate approach to reducing the effects of
noise in concentration edge detection and reconstruction is explained in [6].
We note that each of these works describes the design of a single family of
concentration factors. Our present work, in comparison, is more general in
formulation and allows for the realization of multiple families of concentration
factors.

We start our discussion of concentration factor design by obtaining an expres-
sion relating the jump function to the concentration jump response. Consider
a periodic function on [−π, π) with a single jump at x = ζ. We remark that
this discussion may be easily generalized to the case of multiple jumps, as long

as any two jumps are separated by a distance greater than O
(

logN
N

)

. We start

by expressing the Fourier coefficients in terms of the jump locations and values.
For k 6= 0, we have

f̂(k) =
1

2π

∫ ζ−

−π

f(x)e−ikxdx+
1

2π

∫ π

ζ+

f(x)e−ikxdx. (12)

On integrating by parts, we obtain

f̂(k) =
(

f(ζ+)− f(ζ−)
) e−ikζ

2πik
+

1

ik
·
(

1

2π

∫ ζ−

−π

f ′(x)e−ikx +
1

2π

∫ π

ζ+

f ′(x)e−ikx

)

,

(13)
where we have used the periodicity of f . From (2), we obtain

f̂(k) = [f ](ζ)
e−ikζ

2πik
+

1

ik
·
(

1

2π

∫ ζ−

−π

f ′(x)e−ikx +
1

2π

∫ π

ζ+

f ′(x)e−ikx

)

.

Note that the term within parenthesis is the same as Eq. (12) for f ′. Therefore,
by repeated integration by parts we obtain

f̂(k) =
1

2π

(

[f ](ζ)

ik
+

[f ′](ζ)

(ik)2
+

[f ′′](ζ)

(ik)3
+ ...

)

e−ikζ , k 6= 0. (14)
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Let us now substitute this in the expression for the concentration sum in (3).

Sσ
N [f ](x) =

∑

0<|k|≤N

f̂(k)iσ

( |k|
N

)

sgn(k)eikx

=
∑

0<|k|≤N

[

1

2π

(

[f ](ζ)

ik
+

[f ′](ζ)

(ik)2
+ ...

)

e−ikζ

]

iσ

( |k|
N

)

sgn(k)eikx

=
[f ](ζ)

2π

∑

0<|k|≤N

σ
(

|k|
N

)

sgn(k)

k
eik(x−ζ)

+
[f ′](ζ)

2π

∑

0<|k|≤N

σ
(

|k|
N

)

sgn(k)

ik2
eik(x−ζ)

+
[f ′′](ζ)

2π

∑

0<|k|≤N

σ
(

|k|
N

)

sgn(k)

i2k3
eik(x−ζ) + ... . (15)

Recall that the first term in the above equation is a shifted and scaled jump
response, W σ,N

0 , (Def. 2). Similarly we may define

1

2π

∑

0<|k|≤N

σ
(

|k|
N

)

sgn(k)

ik2
eikx :=W

σ,N
1 (x), (16)

and, in general,

1

2π

∑

0<|k|≤N

σ
(

|k|
N

)

sgn(k)

iqkq+1
eikx :=W σ,N

q (x). (17)

Substituting in (15), we obtain

Sσ
N [f ](x) = [f ](ζ)W σ,N

0 (x− ζ) + [f ′](ζ)W σ,N
1 (x− ζ) + [f ′′](ζ)W σ,N

2 (x− ζ) + ... .

(18)
We note that the jump function is supported on a set of zero measure, making
the theoretical development and analysis of the method difficult. To overcome
this, we follow [5] and similarly use a regularized equivalent of the jump function,
which we denote by [f ]ǫ(x), and define as

[f ]ǫ(x) =







[f ](ζ) |x− ζ| ≤ ǫ, ǫ > 0, ǫ ∼ O
(

2π
2N+1

)

0 else.
(19)
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Thus, (18) becomes

Sσ
N [f ](x) ≈ [f ]ǫ(ζ)W

σ,N
0 (x− ζ) + [f ′]ǫ(ζ)W

σ,N
1 (x− ζ)+

[f ′′]ǫ(ζ)W
σ,N
2 (x− ζ) + ...

≈
∫ π

−π

[f ]ǫ(ζ)W
σ,N
0 (x− ζ)dζ +

∫ π

−π

[f ′]ǫ(ζ)W
σ,N
1 (x− ζ)dζ+

∫ π

−π

[f ′′]ǫ(ζ)W
σ,N
2 (x − ζ)dζ + ...

= ([f ]ǫ ∗W σ,N
0 )(x) + ([f ′]ǫ ∗W σ,N

1 )(x) + ([f ′′]ǫ ∗W σ,N
2 )(x) + ... .

(20)

From (16) and (17), we note that W σ,N
i (x) = (B̃i ∗ Cσ

N )(x), where B̃i(x) are
normalized Bernoulli polynomials4, [13], and Cσ

N (x) is the concentration kernel
(4). Since B̃i(x) has a discontinuity in its ith derivative at x = 0, each of
these kernels denotes the response of the concentration sum to jumps in the
ith derivative of the function. Since we are interested in identifying jumps, we
will call W σ,N

0 as the jump response of the concentration method to a unit
jump or the “jump waveform”. The jump response and the first three higher-
order kernels associated with the polynomial concentration factor are plotted
for illustrative purposes in Figure 4. Note the alternating even-odd nature of
the kernels and the reduced scale of the higher order kernel plots.

3.1 Framework for Concentration Factor Design

From the prior discussion, it is clear that the objective in concentration factor
design is to emphasize W σ,N

0 (x), while suppressing the impact of W σ,N
i (x), i >

05. Further, for a faithful jump approximation, we require (from Def. 1) that

W
σ,N
0 (x) have properties similar to the indicator function

δ(x) =

{

1 x = 0

0 else.
(21)

Consequently, the design framework consists of solving an iterative program
which computes a concentration factor σ for (3) such that the above conditions
are satisfied. A typical problem formulation takes the form

min
σ

φ0(σ)

subject to φm(σ) = cm, m = 1, ...,M

ψn(σ) ≤ dn, n = 1, ....N. (22)

4High-resolution reconstruction methods for discontinuous data based on subtracting out
these Bernoulli polynomials have been pursued successfully in [13].

5The necessity to suppress W
σ,N

i
(x), i > 0 is evident in the jump function approximation

of f2(x), plotted in Figure 3(b).
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Figure 4: The jump response and first three higher order kernels associated with
the polynomial concentration factor (N = 64)

The objective function φ0 is typically a norm measure of W σ,N
0 (x). In this ex-

pression, cm and dn are constants or functions independent of σ while the con-
straints are typically functions of W σ,N

i (x) or σ. Sample problem formulations
are discussed in Section 3.2. The computational complexity of the problem can
be reduced by noting that σ is an even function. This follows from the admissi-
bility condition requiring the concentration kernel (4) to be odd. Consequently,
the design problem is an iterative program of size N rather than 2N + 1.

All problem formulations which are discussed below are convex programs.
Most are linear programs or quadratic programs with linear equalities and in-
equalities. In broad brush, they can all be formulated as second order cone
programs (SOCPs), which can be solved using a variety of methods, [10]. In
rare cases, problem formulations can lead to quasiconvex problems, which may
necessitate other solution methods. In all simulations in this paper, we used
CVX, a package for specifying and solving convex programs [11, 12]. Programs
were implemented in Matlab (version 7.7) with CVX version 1.2 (build 711).
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3.2 Sample Problem Formulations

The following problem formulations serve to illustrate the design framework.

1. Problem Formulation 1 - The (first-order) polynomial concentration factor
We start with a problem formulation minimizing the 2-norm of the jump
waveform W

σ,N
0 (x), while ensuring it is properly normalized.

min
σ

‖W σ,N
0 ‖2

subject to W
σ,N
0

∣

∣

∣

x=0
= 1. (23)

This results in a concentration factor and jump response as plotted in
Figure 5.
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Figure 5: Problem Formulation 1, N = 64

By comparing Figure 5 with Figs. 1 and 2, it is clear that this problem formula-
tion results in the first-order polynomial concentration factor. This conjecture
may be formalized in the following theorem:

Theorem 3.1. Let W σ,N
0 be the jump response. The concentration factor

σ(η) = σ
(

|k|
N

)

that solves the problem

min
σ

‖W σ,N
0 ‖2

subject to W
σ,N
0

∣

∣

∣

x=0
= 1 (24)

is the first-order polynomial concentration factor, σ1
P (η) = πη.
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Proof. By Parseval’s relation, we have

∥

∥

∥W
σ,N
0

∥

∥

∥

2
=







∑

0<|k|≤N

∣

∣

∣

∣

∣

∣

σ
(

|k|
N

)

sgn(k)

k

∣

∣

∣

∣

∣

∣

2






1
2

=







∑

0<|k|≤N

∣

∣

∣

∣

∣

∣

σ
(

|k|
N

)

|k|

∣

∣

∣

∣

∣

∣

2






1
2

. (25)

By defining η = |k|
N , the above expression becomes

∥

∥

∥W
σ,N
0

∥

∥

∥

2
=

1

N





∑

0<η≤1

∣

∣

∣

∣

σ (η)

η

∣

∣

∣

∣

2




1
2

. (26)

The error is minimized when each term in the sum is minimized. Setting

d
(

σ(η)
η

)2

dη
to zero, we obtain

2

(

σ(η)

η

)

·
(

ησ′(η)− σ(η)

η2

)

= 0.

Since η 6= 0, we have
ησ′(η) = σ(η).

The solution of this equation takes the form

σ(η) = C · η, (27)

where C is some constant. We determine C using the equality constraint,

W
σ,N
0

∣

∣

∣

x=0
= 1.

1

2π

∑

0<|k|≤N

σ
(

|k|
N

)

sgn(k)

k
= 1

1

πN

1
∑

η=1/N

σ(η)

η
= 1

C

πN
·N = 1

C = π. (28)

The result follows.
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2. Problem Formulation 2 - Sparse jump response
The jump response of the polynomial concentration factor shows the pres-
ence of strong oscillatory behavior in the smooth regions away from the
jumps. This can present a significant problem in identification of jumps
by thresholding, leading to numerous false positives. We therefore con-
sider a problem formulation where we minimize the 1-norm of the jump
waveform W

σ,N
0 (x), subject to the usual normalization constraint.

min
σ

‖W σ,N
0 ‖1

subject to W
σ,N
0

∣

∣

∣

x=0
= 1. (29)

This results in a concentration factor and jump response as plotted in
Figure 6.
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Figure 6: Problem Formulation 2, N = 64

As expected, the response in smooth regions is much smaller. The trade-off,
however, is a decreased resolution of the actual jump and strong oscillatory
sidelobes in the immediate vicinity of the jump. These features are illustrated
in the plots of Figure 7, which plots the absolute error between the true jump
function and the concentration jump response on a logarithmic scale. The error
plots for different values of N are provided to infer convergence behavior. The
almost flat error profile away from the jump in Figure 7(a) (Problem formulation
1) is a result of the slowly decaying oscillations. This is to be contrasted with
the vanishing response in the same region in Figure 7(b) (Problem formulation
2).

3. Problem Formulation 3 - Higher order concentration factors
The previous problem formulations impose no constraints on the magni-
tude of the higher order kernels. From (20), we observe that this can
present a problem when computing jump approximations for functions
with significant variation and/or with jumps in higher-order derivatives.
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Figure 7: Log absolute error between the true jump function and the concen-
tration jump approximation, N = 64

This was illustrated in Figure 3 (b), where the jump function approx-
imations of f2(x) using the (low-order) trigonometric and (high-order)
exponential concentration factors were plotted. For reference, we plot
in Figure 8 the first four higher-order kernels, W σ,N

i , i = 1, .., 4, for the
trigonometric and exponential concentration factors respectively. Note
the logarithmic scale and the significantly reduced values of the kernels
for the exponential concentration factor.
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Figure 8: Plot of the higher-order kernels, W σ,N
i , i = 1, .., 4, (N = 64)

With this in mind, we consider a problem formulation where we impose
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constraints on the higher-order kernels6.

min
σ

‖W σ,N
0 ‖1

subject to W
σ,N
0

∣

∣

∣

x=0
= 1

∥

∥

∥W
σ,N
1

∥

∥

∥

∞
≤ 10−1

∥

∥

∥W
σ,N
2

∥

∥

∥

∞
≤ 10−3

σ ≥ 0, σ(1) = 0. (30)

This results in a concentration factor and jump response as plotted in
Figure 9.
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Figure 9: Problem Formulation 3, N = 64

Its effectiveness in canceling out gradients and oscillations is illustrated in Figure
10, which plots the response of the factors from problem formulations 2 and 3
respectively to the test function f2(x) defined in (10). Problem formulation 2
had no constraints on the higher order kernels; consequently, the jump response
in Figure 10 (a) shows a significant non-zero value in the sinusoidal region. In
contrast, this part of the jump response in Figure 10 (b) is near zero7. Such a
concentration factor may be necessary in applications where functions with large
variation are encountered, such as the solution of PDEs by spectral methods
involving highly oscillatory solutions. Plots of the first four higher-order kernels
corresponding to the two concentration factors are given in Figure 11. Note
the significantly smaller values for problem formulation 3. It is also illustrative
to compare the performance of the factor from problem formulation 3 to the

6Ideally, the higher-order kernels should be vanishingly small. Programming constraints,
however, make this difficult to achieve.

7As before, the small oscillatory response in the vicinity of x = − 5π
6

is due to the discon-
tinuities in the derivative and higher-order derivatives of f2(x).
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Figure 10: Comparison of low and high-order concentration jump approxima-
tions, N = 64

exponential concentration factor. The jump function approximations using the
two factors are plotted in Figure 3 (b) and Figure 10 (b) respectively, while
the plots of the higher-order kernels are provided in Figure 8 (b) and Figure
11 (b) respectively. We see that the concentration factor from the iterative
formulation is more effective in canceling out the oscillatory response in the
sinusoidal region. The underlying principle in the design of the two factors, is
however, similar. The exponential factor was designed to cancel out as many
moments as the order of the factor, [2]. Problem formulation 3 serves the same
purpose by canceling out several higher-order kernels. It is conceivable that
a judicious choice of constraints in the iterative program will yield a solution
numerically equivalent to the exponential concentration factor.
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Figure 11: Logarithmic plot of the higher-order kernels, W σ,N
i , i = 1, .., 4, (N =

64)
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4. Problem Formulation 4
The method is also amenable to the imposition of other constraints. As an
example, consider the following problem formulation, where we constrain
the jump response to be small (O(10−4)) beyond the immediate vicinity
of the jump.

min
σ

‖W σ,N
0 ‖2

subject to W
σ,N
0

∣

∣

∣

x=0
= 1

∣

∣

∣W
σ,N
0

∣

∣

∣

|x|≥0.2
≤ 10−4. (31)

This results in a concentration factor and jump response as plotted in
Figure 12. Note the clean jump response, with just one dominant sidelobe
in the immediate vicinity of the jump.
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Figure 12: Problem Formulation 4, N = 64

4 Concentration Factor Design for Missing or

Banded Spectral Data

This framework may also be utilized for the design of concentration factors with
data missing certain coefficients. In particular, we will look into the problem
of data missing measurements in spectral bands. This may be the case due
to incidental or intentional narrowband interference, instrumentation errors or
unreliable measurements in these bands. The use of standard concentration
factors in these cases results in additional spurious oscillations throughout the
reconstruction interval, as illustrated in Figure 13. This figure plots the jump
response to a unit ramp using the polynomial factor and the concentration factor
designed in problem formulation 2. With N = 64, Fourier modes K = {k | 30 ≤
|k| ≤ 40} are assumed missing.
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Figure 13: Use of standard concentration factors with missing data, N = 64

These additional spurious responses can lead to false jump detects, especially
in the presence of noise. Hence, we use the design framework to explicitly specify
the missing data as a constraint in the problem formulation, as in the following
iterative program:

min
σ

‖W σ,N
0 ‖1

subject to W
σ,N
0

∣

∣

∣

x=0
= 1

σ(K) = 0
∣

∣

∣W
σ,N
0

∣

∣

∣

|x|≥0.35
≤ 10−3. (32)

This results in a concentration factor and jump response as plotted in Figure 14.
Note the significantly reduced spurious oscillations away from the jump. The
one consequence of the missing data, however, is the slightly reduced resolution
of the jump itself. Also note that the iterative program implicitly imposes a
degree of smoothness in the concentration factor in Fourier space.

Figure 15 plots the performance of the factor on the following test function.

f3(x) =















sin(x) −π ≤ x < −π
2

− cos
(

3x
2

)

−π
2 < x < π

4

π − x π
4 < x ≤ π.

(33)

[f ]3(x) =















√
2+1√
2

≈ 1.707 x = −π
2

3π
4 + 1

2

√

2−
√
2 ≈ 2.734 x = π

4

0 else.

(34)
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Figure 14: Concentration factor design for missing data, N = 64, modes 30−40
missing.

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

[f]
(x

)

 

 
f
S

N
σ[f]

(a) Jump Approximation – Problem For-
mulation 2

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

[f]
(x

)

 

 
f
S

N
σ[f]

(b) Jump Approximation – Concentration
factor from solving (32)

Figure 15: Jump approximation of f3(x) from its Fourier modes, N = 64, modes
30− 40 missing.
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The associated jump function is provided for reference in (34). As before,
we note that the jump approximation is much cleaner. Moreover, with the
standard concentration factors, the jump heights are not identified correctly.
Recall (Section 2, admissibility conditions) that the concentration factors are
required to satisfy a normalization constraint. This constraint is violated in the
case of missing data, i.e., for the standard concentration factors

N
∑

k=1
k/∈K

σ
(

|k|
N

)

k
<

N
∑

k=1

σ
(

|k|
N

)

k
= 1. (35)

Consequently, the jump response has the property that W σ,N
0 (0) < 1. This re-

sults in the jump height being incorrectly identified. It is only when the missing
modes are explicitly modeled in the design process, the resulting concentration
factor is suitably normalized, with

N
∑

k=1
k/∈K

σmis

(

|k|
N

)

k
= 1. (36)

5 Concluding Remarks

In this paper, we have introduced an iterative framework for the design of con-
centration factors for use in edge detection from Fourier data. Some of the
traditional concentration factors have been shown to be obtained as specific for-
mulations of the design framework. We have also demonstrated the use of this
framework for the design of concentration factors from Fourier data missing a
band of modes. Thus designed concentration factors have been shown to provide
cleaner jump approximations, as well as more accurate jump values.

Some avenues for future investigation remain, including the incorporation
of statistical characteristics of noise in the design process. The extension of
this framework to the design of multidimensional concentration factors is also a
problem of significant interest and importance.
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