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Introduction

Detection of jump discontinuities constitutes an important task in several areas of engi-
neering and signal processing. In certain applications such as MR imaging, input data is
collected in the spectral domain. In such cases, the concentration method allows us to
compute jump locations and values from a finite number of spectral coefficients. In this
poster,
•We discuss the design of concentration factors, which determine the characteristics of
the jump approximation.

•We provide waveform-aware iterative formulations of the method for accurate jump
detection.

•We discuss an application of the method to estimating point-spread functions (psf) in
blurring problems.

The Concentration Method

Let f be a 2π-periodic piecewise-smooth function. We define its jump function as
[f ](x) := f (x+)− f (x−)

Note that the jump function is non-zero only at the singular support of f . Given the
Fourier coefficients

f̂ (k)

N

k=−N , the concentration method, [1,2], computes an approxi-
mation to the jump function using the following partial sum

SσN [f ](x) = i Σ
|k|≤N

f̂ (k) sgn(k)σ

|k|
N

 e
ikx

where σ(η) = σ
|k|N

 are known as concentration factors. There factors are known to
satisfy certain admissibility conditions:

1
N
Σ
k=1

σ


k

N

 sin(kx) is odd

2
σ(η)
η
∈ C2(0, 1)

3
1∫
ε

σ(η)
η
→ −π, ε = ε(N) > 0 being small
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Fig.: Sample Factors
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Fig.: Jump Responses, N = 20

Concentration Factor Design

Integrating the Fourier integral by parts, we obtain

f̂ (k) = 1
2π Σ

a∈A


[f ](ζa)
ik

+ [f ′](ζa)
(ik)2 + [f ′′](ζa)

(ik)3 + ...

 e
−ikζa

where ζa, a ∈ A denote the jump locations. Substituting this expression in the concen-
tration sum, we obtain

SσN [f ](x) = ([f ] ∗Dσ,N
0 )(x) + ([f ′] ∗Dσ,N

1 )(x) + ([f ′′] ∗Dσ,N
2 )(x) + ...

with Dσ,N
v (η) = 1

2π Σ
0<|k|≤N

i σ
|k|N

 sgn(k)
(ik)v+1 eikη, v = 0, 1, 2, ...

•Design Objective: enhance Dσ,N
0 (x); reduce Dσ,N

p (x), p > 0.

Sample Problem Formulations

P1. minσ ‖Dσ,N
0 − δ ‖2

subject to Dσ,N
0

∣∣∣∣∣∣∣∣x=0 = 1

P2. minσ ‖Dσ,N
0 − δ ‖1

subject to Dσ,N
0

∣∣∣∣∣∣∣∣x=0 = 1
∥∥∥∥∥∥∥∥D

σ,N
1

∥∥∥∥∥∥∥∥∞ ≤ 10−1,
∥∥∥∥∥∥∥∥D

σ,N
2

∥∥∥∥∥∥∥∥∞ ≤ 10−3
∥∥∥∥∥∥∥∥D

σ,N
3

∥∥∥∥∥∥∥∥∞ ≤ 10−4, σ ≥ 0

P3. (missing coefficients) minσ ‖Dσ,N
0 − δ ‖1

subject to Dσ,N
0

∣∣∣∣∣∣∣∣x=0 = 1,
∣∣∣∣∣∣∣∣D

σ,N
0 (x)

∣∣∣∣∣∣∣∣|x|≥.35 ≤ 10−3

σ ≥ 0, σ(1) = 0, σ(K) = 0,
∥∥∥∥∥∥∥∥=

D
σ,N
0


∥∥∥∥∥∥∥∥∞ ≤ 10−4, for K ⊂ [−N,N ]
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Fig.: Plot of the Factors
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Fig.: Jump Responses, N = 64

Iterative “Waveform-aware” Edge Detection

•We take inspiration from sparsity enforcing regularization routines and their iterative
solutions, [3].

•We exploit the characteristic responses of the concentration factors.
SσN [f ](x) = (f ∗Kσ

N)(x) ≈ ([f ] ∗W σ
N)(x)

Here, W σ
N is the characteristic response to a unit jump.

Iterative Problem Formulation
minp ‖Wp− SN [f ] ‖22 + λ‖ p ‖1

where W is a toeplitz matrix built out of the characteristic response.
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Fig.: Jump detection – Iterative Formulation (N = 40, Exponential factor)

PSF Estimation in Blurring Problems

Consider the convolutional blurring model
g = f ∗ h + n

where f is the true function, h is the unknown blur or the point-spread function (psf),
n is noise and g is the observed function. Let us apply the concentration edge detector.
We have,

SσN [g] = T (f ∗ h + n) = (f ∗ h + n) ∗Kσ
N

= f ∗ h ∗Kσ
N + n ∗Kσ

N = (f ∗Kσ
N) ∗ h + n ∗Kσ

N

≈ [f ] ∗ h + n ∗Kσ
N

Hence, we observe shifted and scaled replicates of the psf.
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Fig.: Gaussian Blur Estimation
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Fig.: Motion Blur Estimation

•Gaussian blur pre-processed using a low-pass filter.
•Motion blur post-processed using TV-denoising.
•Blur parameters may be estimated using simple data fit routines.
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