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The Compressive Phase Retrieval Problem

Let x ∈ Cn be a k-sparse signal, with k � n. Given squared magnitude measurements
y = |Mx|2 + n,

where M ∈ Cm×n denotes a measurement matrix and n ∈ Rm denotes measurement
noise, the compressive phase retrieval problem seeks to recover the unknown signal x
(upto some global phase offset) using only m� n phaseless measurements, y ∈ Rm.

We are interested in measurement constructionsM and associated recovery algorithms
AM : Rm → Cn which are efficient, use a minimal number of measurements, and are
robust to measurement errors.

The phase retrieval problem occurs in several fields of science such as X-ray crystallog-
raphy, optics, astronomy and quantum mechanics, where, either due to the underlying
physics or instrumentation limitations, we are unable to acquire phase information.

Main Result
There exists a deterministic algorithm AM : Rm→ Cn for which the following holds:
Let ε ∈ (0, 1], x ∈ Cn with n sufficiently large, and k ∈ {1, 2, . . . , n} ⊂ N. Then,
one can select a random measurement matrixM∈ Cm×n such that
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This is the first sub-linear time compressive phase retrieval algorithm.
Both the sampling and runtime complexities are sub-linear in the problem size and
(poly)log-linear in the sparsity.

Proposed Algorithm

Let P ∈ Cm×d denote an admissible phase retrieval matrix associated with the phase
retrieval method ∆P , and let C ∈ Cd×n denote a compressive sensing matrix associated
with the sub–linear time compressive sensing algorithm ∆C.
Construct the measurement matrix M for the compressive phase retrieval problem as
M = PC. Now, consider the following simple two stage formulation:

1 Apply a fast phase retrieval method, ∆P : Rm→ Cd, to the phaseless
measurements y and recover an intermediate compressed signal z ∈ Cd, where
d = O (k log k · log n).

2 Next, use a sub–linear time compressive sensing algorithm, ∆C : Cd→ Cn, to
recover the unknown signal x.

We can show that ∆C ◦ ∆P : Rm → Cn recovers the unknown signal x upto a global
phase factor accurately and stably.

Ingredients: (I) Fast (Non-Sparse) Phase Retrieval

Use measurement constructions P arising from local correlation-based measurements.
For example, with noiseless measurements y ∈ R12, z ∈ C4, and P ∈ C12×4, we have

P =


P1
P2
P3

 , Pi ∈ C4×4, i ∈ {1, 2, 3}, Pi =


(pi)∗1 (pi)∗2 0 0

0 (pi)∗1 (pi)∗2 0
0 0 (pi)∗3 (pi)∗4

(pi)∗2 0 0 (pi)∗1

 .

This corresponds to (squared magnitude) correlation measurements of the intermediate
compressed signal z ∈ C4 with three local masks p1,p2,p3 ∈ C4, where (pi)` = 0 for
` > 2, i ∈ {1, 2, 3}. Writing out the correlation sum explicitly and setting δ = 2, we
obtain
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where we have used the notation (pi)j,k := (pi)j(pi)∗k. The resulting linear system of
equations for the (scaled) phase differences {ziz∗j} may be written as

(y1)1
(y2)1
(y3)1
(y1)2
(y2)2
(y3)2
(y1)3
(y2)3
(y3)3
(y1)4
(y2)4
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=



(p1)1,1(p1)1,2(p1)2,1(p1)2,2 0 0 0 0 0 0 0 0
(p2)1,1 (p2)1,2 (p2)2,1(p2)2,2 0 0 0 0 0 0 0 0
(p3)1,1 (p3)1,2 (p3)2,1(p3)2,2 0 0 0 0 0 0 0 0

0 0 0 (p1)1,1(p1)1,2(p1)2,1(p1)2,2 0 0 0 0 0
0 0 0 (p2)1,1 (p2)1,2 (p2)2,1(p2)2,2 0 0 0 0 0
0 0 0 (p3)1,1 (p3)1,2 (p3)2,1(p3)2,2 0 0 0 0 0

0 0 0 0 0 0 (p1)1,1(p1)1,2(p1)2,1(p1)2,2 0 0
0 0 0 0 0 0 (p2)1,1 (p2)1,2 (p2)2,1(p2)2,2 0 0
0 0 0 0 0 0 (p3)1,1 (p3)1,2 (p3)2,1(p3)2,2 0 0

(p1)2,2 0 0 0 0 0 0 0 0 (p1)1,1(p1)1,2(p1)2,1

(p2)2,2 0 0 0 0 0 0 0 0 (p2)1,1(p2)1,2(p2)2,1

(p3)2,2 0 0 0 0 0 0 0 0 (p3)1,1(p3)1,2(p3)2,1
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.

This is a block-circulant system which can be inverted efficiently using FFTs. Moreover,
both random and deterministic prescriptions for the measurement masks pi are available,
and we can show that the resulting system is well-conditioned (see [1] for details). Note
that by solving this linear system, we automatically obtain |z|. Moreover, we can solve
an angular synchronization problem using an eigenvector method to recover arg z.
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︸ ︷︷ ︸

2δ − 1 entries in band

normalize−−−−−→


1 ei(φ1−φ2) 0 ei(φ1−φ4)

ei(φ2−φ1) 1 ei(φ2−φ3) 0
0 ei(φ3−φ2) 1 ei(φ3−φ4)

ei(φ4−φ1) 0 ei(φ4−φ3) 1


leading−−−−−→

eigenvector


e
iφ1

e
iφ2

e
iφ3

e
iφ4

 .

Note that the leading eigenvector may be computed using the power method in essentially
linear-time (see [3] for details). The above framework recovers “flat” (i.e., non-sparse)
z. To recover arbitrary vectors, we multiply P with a random unitary matrix (a fast
Johnson-Lindenstrauss transform) to “flatten“ z.
The sampling and runtime complexities for this method are O(d · log2 d · log3(log d)) and
O(d · log3 d · log3(log d)) respectively.

Ingredients: (II) Sub-Linear Time Compressive Sensing

Choose the measurement matrix C to be a random sparse binary matrix obtained by ran-
domly sub-sampling rows of a well-chosen incoherent matrix (for example, the adjacency
matrix of certain unbalanced expander graphs). In [2], it is shown that these matrices
satisfy certain combinatorial properties which permit the use of fast compressed sensing
recovery algorithms.
The recovery algorithm then proceeds in two phases:

1 Identify the k largest magnitude entries of x using standard bit-testing techniques.
2 Estimate these k largest entries using median estimates and techniques from
computer science streaming literature.

The sampling and runtime complexities of this method are both O(k · log k · log n).

Numerical Results

Left panel figure shows execution time as a function of sparsity for various problem
dimensions. We observe that the overall execution time is sub-linear in the problem size
n and (poly) log-linear in the sparsity k.
The right panel figure illustrates robustness of the method to (i.i.d. Gaussian) measure-
ment noise. It plots the reconstruction error in dB as a function of the added noise level
(in dB) for a length n = 220 signal using less than 10% of measurements.
In both cases, complex sparse test signals with i.i.d complex Gaussian non-zero entries
were used, with non-zero index locations chosen by k-permutations.
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