

The Compressive Phase Retrieval Problem

Let $\mathbf{x} \in \mathbb{C}^n$ be a k-sparse signal, with $k \ll n$. Given squared magnitude measurements $\mathbf{y} = |\mathcal{M}\mathbf{x}|^2 + \mathbf{n},$

where $\mathcal{M} \in \mathbb{C}^{m \times n}$ denotes a measurement matrix and $\mathbf{n} \in \mathbb{R}^m$ denotes measurement noise, the compressive phase retrieval problem seeks to recover the unknown signal \mathbf{x} (upto some global phase offset) using only $m \ll n$ phaseless measurements, $\mathbf{y} \in \mathbb{R}^m$.

We are interested in measurement constructions \mathcal{M} and associated recovery algorithms $\mathcal{A}_{\mathcal{M}}: \mathbb{R}^m \to \mathbb{C}^n$ which are efficient, use a minimal number of measurements, and are robust to measurement errors.

The phase retrieval problem occurs in several fields of science such as X-ray crystallography, optics, astronomy and quantum mechanics, where, either due to the underlying physics or instrumentation limitations, we are unable to acquire phase information.

Main Result

There exists a deterministic algorithm $\mathcal{A}_{\mathcal{M}}: \mathbb{R}^m \to \mathbb{C}^n$ for which the following holds: Let $\epsilon \in (0,1]$, $\mathbf{x} \in \mathbb{C}^n$ with n sufficiently large, and $k \in \{1,2,\ldots,n\} \subset \mathbb{N}$. Then, one can select a random measurement matrix $\mathcal{M} \in \mathbb{C}^{m \times n}$ such that $\|\mathbf{x} - \mathbf{x}^{ ext{opt}}_{(k/\epsilon)}\|$

$$\min_{\theta \in [0,2\pi)} \left\| e^{i\theta} \mathbf{x} - \mathcal{A}_{\mathcal{M}} \left(|\mathcal{M} \mathbf{x}|^2 \right) \right\|_2 \le \left\| \mathbf{x} - \mathbf{x}_k^{\text{opt}} \right\|_2 + \frac{22\epsilon}{2} \left\| \mathbf{x} - \mathbf{x}_k^{\text{opt}} \right\|_2$$

is true with probability at least $1 - \frac{1}{C \cdot \log^2(n) \cdot \log^3(\log n)}$. Here, m can be chosen to be $\mathcal{O}(\frac{k}{\epsilon} \cdot \log^3(\frac{k}{\epsilon}) \cdot \log^3(\log \frac{k}{\epsilon}) \cdot \log n)$. Furthermore, the algorithm will run in $\mathcal{O}(\frac{k}{\epsilon} \cdot \log^4(\frac{k}{\epsilon}) \cdot \log^3(\log \frac{k}{\epsilon}) \cdot \log n)$ -time.

This is the *first sub-linear time* compressive phase retrieval algorithm. Both the sampling and runtime complexities are *sub-linear* in the problem size and (poly)log-linear in the sparsity.

Proposed Algorithm

Let $\mathcal{P} \in \mathbb{C}^{m \times d}$ denote an admissible phase retrieval matrix associated with the phase retrieval method Δ_P , and let $\mathcal{C} \in \mathbb{C}^{d \times n}$ denote a compressive sensing matrix associated with the sub-linear time compressive sensing algorithm Δ_C .

Construct the measurement matrix \mathcal{M} for the compressive phase retrieval problem as $\mathcal{M} = \mathcal{PC}$. Now, consider the following simple two stage formulation:

- 1 Apply a fast phase retrieval method, $\Delta_P : \mathbb{R}^m \to \mathbb{C}^d$, to the phaseless measurements **y** and recover an intermediate compressed signal $\mathbf{z} \in \mathbb{C}^d$, where $d = \mathcal{O}\left(k \log k \cdot \log n\right).$
- 2 Next, use a sub-linear time compressive sensing algorithm, $\Delta_C : \mathbb{C}^d \to \mathbb{C}^n$, to recover the unknown signal \mathbf{x} .

We can show that $\Delta_C \circ \Delta_P : \mathbb{R}^m \to \mathbb{C}^n$ recovers the unknown signal **x** up to a global phase factor accurately and stably.

Fast Compressive Phase Retrieval

Aditya Viswanathan and Mark Iwen

Department of Mathematics, Michigan State University {aditya,markiwen}@math.msu.edu

Use mea For example 1

easurement constructions
$$\mathcal{P}$$
 arising from local correlation-based measurements
ample, with noiseless measurements $\mathbf{y} \in \mathbb{R}^{12}$, $\mathbf{z} \in \mathbb{C}^4$, and $\mathcal{P} \in \mathbb{C}^{12 \times 4}$, we have
 $\mathcal{P} = \begin{pmatrix} \mathcal{P}_1 \\ \mathcal{P}_2 \\ \mathcal{P}_3 \end{pmatrix}$, $\mathcal{P}_i \in \mathbb{C}^{4 \times 4}$, $i \in \{1, 2, 3\}$, $\mathcal{P}_i = \begin{pmatrix} (\mathbf{p}_i)_1^* (\mathbf{p}_i)_2^* & 0 & 0 \\ 0 & (\mathbf{p}_i)_1^* (\mathbf{p}_i)_2^* & 0 \\ 0 & 0 & (\mathbf{p}_i)_3^* (\mathbf{p}_i)_4^* \\ (\mathbf{p}_i)_2^* & 0 & 0 & (\mathbf{p}_i)_1^* \end{pmatrix}$.

This corresponds to (squared magnitude) *correlation* measurements of the intermediate compressed signal $\mathbf{z} \in \mathbb{C}^4$ with three *local* masks $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \in \mathbb{C}^4$, where $(p_i)_{\ell} = 0$ for $\ell > 2, i \in \{1, 2, 3\}$. Writing out the correlation sum explicitly and setting $\delta = 2$, we obtain

$$(y_i)_{\ell} = \left| \sum_{k=1}^{\delta} (\mathbf{p}_i)_k^* \cdot z_{\ell+k-1} \right|^2 = \sum_{j,k=1}^{\delta} (\mathbf{p}_i)_j (\mathbf{p}_i)_k^* z_{\ell+j-1} z_{\ell+k-1}^* := \sum_{j,k=1}^{\delta} (\mathbf{p}_i)_{j,k} z_{\ell+j-1} z_{\ell+k-1}^*,$$

where we have used the notation $(\mathbf{p}_i)_{j,k} := (\mathbf{p}_i)_j (\mathbf{p}_i)_k^*$. The resulting *linear* system of equations for the (scaled) phase differences $\{z_i z_i^*\}$ may be written as

$egin{pmatrix} (y_1)_1 \ (y_2)_1 \ (y_3)_1 \ \end{pmatrix}$	$(egin{array}{c} ({f p}_1)_{1,1} \ ({f p}_2)_{1,1} \ ({f p}_3)_{1,1} \end{array})$	(\mathbf{n})	$(\mathbf{p}_1)_{2,1}$ $(\mathbf{p}_2)_{2,1}$ $(\mathbf{p}_3)_{2,1}$	$(\mathbf{p}_1)_{2,2}$ $(\mathbf{p}_2)_{2,2}$ $(\mathbf{p}_3)_{2,2}$	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	$egin{pmatrix} z_1 ^2 \ z_1 z_2^* \ z_2 z_1^* \ \end{pmatrix}$
$(y_1)_2 \\ (y_2)_2 \\ (y_3)_2 $	0 0 0	0 0 0	0 0 0	$(\mathbf{p}_{1})_{1,1}$ $(\mathbf{p}_{2})_{1,1}$ $(\mathbf{p}_{3})_{1,1}$			$(\mathbf{p}_1)_{2,2}$ $(\mathbf{p}_2)_{2,2}$ $(\mathbf{p}_3)_{2,2}$	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	$egin{array}{c c c c c c c c c c c c c c c c c c c $
$egin{array}{c} (y_1)_3 \ (y_2)_3 \ (y_3)_3 \end{array}$	0 0 0	0 0 0	0 0 0	0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}$	0 0 0	$(\mathbf{p}_1)_{1,1}$ $(\mathbf{p}_2)_{1,1}$ $(\mathbf{p}_3)_{1,1}$	$(\mathbf{p}_2)_{1,2}$	$(\mathbf{p}_{1})_{2,1}$ $(\mathbf{p}_{2})_{2,1}$ $(\mathbf{p}_{3})_{2,1}$	$\langle \mathbf{p}_2 \rangle_{2,2}$	0 0 0	0 0 0	$egin{array}{c c c c c c c c c c c c c c c c c c c $
$egin{array}{c} (y_1)_4 \ (y_2)_4 \ (y_3)_4 \end{pmatrix}$	$(\mathbf{p}_1)_{2,2}$ $(\mathbf{p}_2)_{2,2}$ $(\mathbf{p}_3)_{2,2}$	0 0 0	0 0 0	0 0 0	0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}$	0 0 0	0 0 0	$(\mathbf{p}_1)_{1,1}$ $(\mathbf{p}_2)_{1,1}$ $(\mathbf{p}_3)_{1,1}$	$(egin{array}{c} {f p_1} {f p_1} {f p_2} {f p_2} {f p_3} {f p_3} {f p_1} {f p_2} {f p_1} {f p_2} {f p_2} {f p_3} {f p_1} {f p_2} {f p_1} {f p_1} {f p_2} {f p_1} {f p_2} {f p_1} {f p_1} {f p_1} {f p_2} {f p_1} {h p_1} {h p_1} {h p_1} {h p_1} {h p_1} {$	$(\mathbf{p_1})_{2,1}$ $(\mathbf{p_2})_{2,1}$ $(\mathbf{p_3})_{2,1}$	$egin{array}{ z_4 ^2\ z_4 z_1^*\ z_1 z_4^* \end{pmatrix}$

This is a *block-circulant* system which can be inverted efficiently using FFTs. Moreover, both random and *deterministic* prescriptions for the measurement masks \mathbf{p}_i are available, and we can show that the resulting system is well-conditioned (see [1] for details). Note that by solving this linear system, we automatically obtain $|\mathbf{z}|$. Moreover, we can solve an *angular synchronization* problem using an eigenvector method to recover arg **z**.

$$\underbrace{\begin{pmatrix} |z_{1}|^{2} & z_{1}z_{2}^{*} & 0 & z_{1}z_{4}^{*} \\ z_{2}z_{1}^{*} & |z_{2}|^{2} & z_{2}z_{3}^{*} & 0 \\ 0 & z_{3}z_{2}^{*} & |z_{3}|^{2} & z_{3}z_{4}^{*} \\ z_{4}z_{1}^{*} & 0 & z_{4}z_{3}^{*} & |z_{4}|^{2} \end{pmatrix}}_{2\delta - 1 \text{ entries in band}} \xrightarrow{\text{normalize}} \begin{pmatrix} 1 & e^{i(\phi_{1} - \phi_{2})} & 0 & e^{i(\phi_{1} - \phi_{4})} \\ e^{i(\phi_{2} - \phi_{1})} & 1 & e^{i(\phi_{2} - \phi_{3})} & 0 \\ 0 & e^{i(\phi_{3} - \phi_{2})} & 1 & e^{i(\phi_{3} - \phi_{4})} \\ e^{i(\phi_{4} - \phi_{1})} & 0 & e^{i(\phi_{4} - \phi_{3})} & 1 \end{pmatrix} \xrightarrow{\text{leading}} \stackrel{\text{leading}}{\underset{e^{i\phi_{3}}}{\underset{e^{i\phi_{4}}}{$$

Note that the leading eigenvector may be computed using the power method in essentially linear-time (see [3] for details). The above framework recovers "flat" (i.e., non-sparse) **z**. To recover arbitrary vectors, we multiply \mathcal{P} with a random unitary matrix (a fast Johnson-Lindenstrauss transform) to "flatten" \mathbf{z} .

The sampling and runtime complexities for this method are $\mathcal{O}(d \cdot \log^2 d \cdot \log^3(\log d))$ and $\mathcal{O}(d \cdot \log^3 d \cdot \log^3(\log d))$ respectively.

Ingredients: (I) Fast (Non-Sparse) Phase Retrieval

Choose the measurement matrix \mathcal{C} to be a random sparse binary matrix obtained by randomly sub-sampling rows of a well-chosen incoherent matrix (for example, the adjacency matrix of certain unbalanced expander graphs). In [2], it is shown that these matrices satisfy certain combinatorial properties which permit the use of fast compressed sensing recovery algorithms.

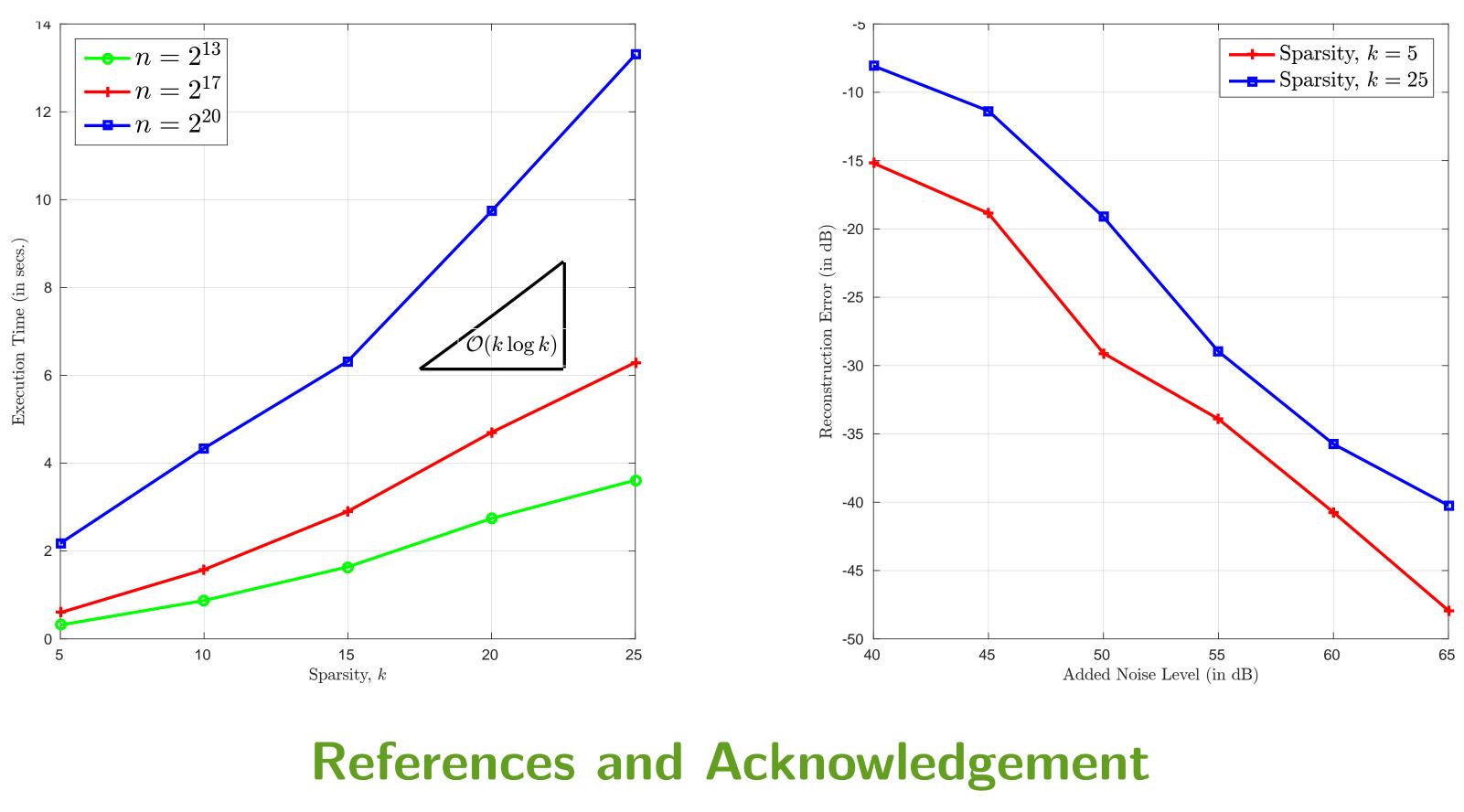
The recovery algorithm then proceeds in two phases:

- 1 Identify the k largest magnitude entries of \mathbf{x} using standard bit-testing techniques. 2 Estimate these k largest entries using median estimates and techniques from computer science streaming literature.

Left panel figure shows execution time as a function of sparsity for various problem dimensions. We observe that the overall execution time is sub-linear in the problem size n and (poly) log-linear in the sparsity k.

The right panel figure illustrates robustness of the method to (i.i.d. Gaussian) measurement noise. It plots the reconstruction error in dB as a function of the added noise level (in dB) for a length $n = 2^{20}$ signal using less than 10% of measurements.

In both cases, complex sparse test signals with i.i.d complex Gaussian non-zero entries were used, with non-zero index locations chosen by k-permutations.



- arXiv:1501.02377, 2015.

This work was supported in part by NSF grant DMS-1416752 and NSA grant H98230-13-1-0275.

MICHIGAN STATE UNIVERSITY

Ingredients: (II) Sub-Linear Time Compressive Sensing

The sampling and runtime complexities of this method are both $\mathcal{O}(k \cdot \log k \cdot \log n)$.

Numerical Results

1 M. Iwen, A. Viswanathan and Yang Wang. *Fast Phase Retrieval for High-Dimensions*.

2 M. Iwen. Compressed Sensing with Sparse Binary Matrices: Instance Optimal Error Guarantees in Near-Optimal Time. J. Complexity, Vol. 30, Issue 1, pp. 1 - 15, 2014. 3 A. Viswanathan and Mark Iwen. Fast Angular Synchronization for Phase Retrieval via Incomplete Information. Proc. SPIE 9597, Wavelets and Sparsity XVI, 959718, Aug. 2015.