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The Phase Retrieval Problem

find x ∈ Cd given |Mx| = b ∈ RD,

where

• b ∈ RD are the magnitude or intensity measurements.

• M ∈ CD×d is a measurement matrix associated with these
measurements.

Let A : RD → Cd denote the recovery method.

The phase retrieval problem involves designing measurement
matrix and recovery method pairs.
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Applications of Phase Retrieval

From “Phase Retrieval from Coded Diffraction Patterns” by E. J. Candes, X. Li, and M. Soltanolkotabi.

Important applications of Phase Retrieval

• X-ray crystallography

• Diffraction imaging

• Transmission Electron Microscopy (TEM)

In many molecular imaging applications, the detectors only capture
intensity measurements.
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Objectives

• Computational Efficiency – Can the recovery algorithm A be
computed in O(d logc d)-time? Here, c is a small constant.

• Computational Robustness: The recovery algorithm, A,
should be robust to additive measurement errors (i.e., noise).

• Minimal Measurements: The number of linear measurements,
D, should be minimized to the greatest extent possible.
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Some Previous Approaches

• Alternating Projection Methods [Gerchberg and Saxton, 1972]
and [Fienup, 1978]

• Work well in practice, not well understood theoretically

• PhaseLift [Candes et. al., 2012]
• Recovery guarantees for random measurements
• Requires O(d) measurements
• Requires solving a SDP – O

(
d3
)
-time

• Phase Retrieval with Polarization [Alexeev et. al. 2014]
• Graph-theoretic frame-based approach
• Requires O(d log d) measurements
• Error guarantee similar to PhaseLift
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Overview of the Our Computational Framework

1 Use shifted compactly supported masks to obtain phase
difference estimates.

|Circ(w)x|2 solve−−−−−−−−→
linear system

xjxj+k, k = 0, . . . , δ

• w is a mask, or window, with δ + 1 non-zero entries.
• xjxj+k gives us the (scaled) difference in phase between

entries xj and xj+k.

2 Solve an angular synchronization problem on the phase
differences to obtain the unknown signal.

xjxj+k
angular−−−−−−−−−−→

synchronization
xj

Constraints on x: We require x to be non-sparse.
(The number of consecutive zeros in x should be less than δ)
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Correlations with Support-Limited Functions

• Let x = [x0 x1 . . . xd−1]
T ∈ Cd be the unknown signal.

• Let w = [w0 w1 . . . wδ 0 . . . 0]T denote a support-limited
mask. It has δ + 1 non-zero entries.

• We are given the (squared) magnitude measurements

(bm)2 = |Circ(wm)x|2 , m = 0, . . . , L

corresponding to L+ 1 distinct masks.
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Correlations with Support-Limited Functions

Explicitly writing out each measurement, we have

(bmk )2 =

∣∣∣∣∣∣
δ∑
j=0

wmj · xk+j

∣∣∣∣∣∣
2

=

δ∑
i,j=0

wmi w
m
j xk+jxk+i

We can also lift these equations to a set of linear equations!
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Solving for Phase Differences

Ordering xnxn+l lexicographically, we obtain a linear system of
equations for the phase differences.

Example: x ∈ Rd, d = 4, δ = 1

M ′0 M ′1
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
︸ ︷︷ ︸

M ′



x0x0
x0x1
x1x1
x1x2
x2x2
x2x3
x3x3
x3x0


︸ ︷︷ ︸

y

=



b00
b10
b01
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

The system matrix M ′ is block circulant!
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Some Entries of the Measurement Matrix

Two strategies

• Random entries (Gaussian, Uniform, Bernoulli, . . . )

• Structured measurements, e.g.,

w`i =

{
e−i/a
4√2δ+1

· e
2πi·i·`
2δ+1 , i ≤ δ

0, i > δ
.

where a := max
{

4, δ−12
}

, and 0 ≤ ` ≤ L.

8 / 18



Structured Measurements

Theorem (Iwen, V., Wang 2015)

Choose entries of the measurement mask wm as follows:

w`i =

{
e−i/a
4√2δ+1

· e
2πi·i·`
2δ+1 , i ≤ δ

0, i > δ
, a := max

{
4,
δ − 1

2

}
, ` ∈ [0, L].

Then, the resulting system matrix for the phase differences, M ′,
has condition number

κ(M ′) < max

{
144e2,

9e2

4
· (δ − 1)2

}
.

Note:

• w`i are scaled entries of a DFT matrix.

• δ is typically chosen to be 6–12.
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Angular Synchronization

The Angular Synchronization Problem

Estimate d unknown angles θ1, θ2, . . . , θd ∈ [0, 2π) from d(δ + 1)
noisy measurements of their differences

∆θij := ∠xi − ∠xj = ∠

(
xixj√
xixi·xjxj

)
mod 2π.
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Angular Synchronization

The unknown phases (modulo a global phase offset) may be
obtained by solving a simple greedy algorithm.

1 Set the largest magnitude component to have zero phase
angle; i.e.,

∠xk = 0, k := argmax
i
xixi.

2 Use this entry to set the phase angles of the next δ entries;
i.e.,

∠xj = ∠xk −∆θkj , j = 1, . . . , δ.

3 Use the next largest magnitude component from these δ
entries and repeat the process.

10 / 18



Recovering Arbitrary Vectors

• Recall: Due to compact support of our masks, only ”flat”
vectors can be recovered

• Arbitrary vectors can be ”flattened” by multiplication with a
random unitary matrix such as W = PFB, where
• P ∈ {0, 1}d×d is a permutation matrix selected uniformly at

random from the set of all d× d permutation matrices

• F is the unitary d× d discrete Fourier transform matrix

• B ∈ {−1, 0, 1}d×d is a random diagonal matrix with i.i.d.
symmetric Bernoulli entries on its diagonal
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A Noiseless Recovery Result

Theorem (Iwen, V., Wang 2015)

Let x ∈ Cd with d sufficiently large. Then, one can select a
random measurement matrix M̃ ∈ CD×d such that the following
holds with probability at least 1− 1

c·ln2(d)·ln3(ln d) : Our algorithm

will recover an x̃ ∈ Cd with

min
θ∈[0,2π]

∥∥∥x− eiθx̃∥∥∥
2

= 0

when given the noiseless magnitude measurements |M̃x|2 ∈ RD.
Here D can be chosen to be O(d · ln2(d) · ln3 (ln d)). Furthermore,
the algorithm will run in O(d · ln3(d) · ln3 (ln d))-time in that case.

To do: Robustness to measurement noise...
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Efficiency

Problem Dimension, d
10 1 10 2 10 3 10 4 10 5

E
x
ec
u
ti
o
n
T
im
e
(i
n
s)

10 -2

10 -1

10 0

10 1

10 2
Execution Time (D = 5d Measurements)

PhaseLift

Gerchberg-Saxton

Block Circ.

O(d3)

O(d log d)

• iid Complex Gaussian
signal

• High SNR applications

• 5d measurements

• 64k problem in ∼ 20 s in
Matlab!
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Robustness

• iid complex Gaussian
signal

• d = 64

• 7d measurements

• Deterministic (windowed
Fourier-like)
measurements
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Robustness

• iid complex Gaussian
signal

• d = 2048

• Not computationally
feasible using PhaseLift
(on a laptop in Matlab)

• Deterministic (windowed
Fourier-like)
measurements
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The Sparse Phase Retrieval Problem

find x ∈ Cd given |Mx| = b ∈ RD,

where

• x is s-sparse, with s� d.

• b ∈ RD are the magnitude or intensity measurements.

• M∈ CD×d is a measurement matrix associated with these
measurements.

Let A : RD → Cd denote the recovery method.

The sparse phase retrieval problem involves designing measurement
matrix and recovery method pairs.
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Sublinear-time Results

Theorem (Iwen, V., Wang 2015)

There exists a deterministic algorithm A : RD → Cd for which the
following holds: Let ε ∈ (0, 1], x ∈ Cd with d sufficiently large, and
s ∈ [d]. Then, one can select a random measurement matrix
M̃ ∈ CD×d such that

min
θ∈[0,2π]

∥∥∥eiθx−A(|M̃x|2
)∥∥∥

2
≤
∥∥x− x opt

s

∥∥
2
+

22ε
∥∥∥x− xopt

(s/ε)

∥∥∥
1√

s

is true with probability at least 1− 1
C·ln2(d)·ln3(ln d) .a Here D can

be chosen to be O
(
s
ε · ln

3( sε ) · ln
3
(
ln s

ε

)
· ln d

)
. Furthermore, the

algorithm will run in O
(
s
ε · ln

4( sε ) · ln
3
(
ln s

ε

)
· ln d

)
-time in that

case.b

aHere C ∈ R+ is a fixed absolute constant.
bFor the sake of simplicity, we assume s = Ω(log d) when stating the

measurement and runtime bounds above.
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