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The Phase Retrieval Problem

find xe C? given |Mx|=beRP,
where

e b € RP are the magnitude or intensity measurements.

o M € CP*d s 3 measurement matrix associated with these
measurements.

Let A: RP — €9 denote the recovery method.

The phase retrieval problem involves designing measurement
matrix and recovery method pairs.



Applications of Phase Retrieval

diffraction patterns

source Lt
P»Kample phase plate

From “Phase Retrieval from Coded Diffraction Patterns” by E. J. Candes, X. Li, and M. Soltanolkotabi.

Important applications of Phase Retrieval
e X-ray crystallography
¢ Diffraction imaging
e Transmission Electron Microscopy (TEM)

In many molecular imaging applications, the detectors only capture
intensity measurements.
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Objectives

e Computational Efficiency — Can the recovery algorithm A be
com pUted in O(d logc d)-t|me? Here, c is a small constant.

e Computational Robustness: The recovery algorithm, A,
should be robust to additive measurement errors (i.e., noise).

e Minimal Measurements: The number of linear measurements,
D, should be minimized to the greatest extent possible.
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Some Previous Approaches

o Alternating Projection Methods [Gerchberg and Saxton, 1972]
and [Fienup, 1978]

e Work well in practice, not well understood theoretically

¢ PhaseLift [Candes et. al., 2012]
e Recovery guarantees for random measurements

o Requires O(d) measurements
e Requires solving a SDP — O (d?)-time

e Phase Retrieval with Polarization [Alexeev et. al. 2014]
o Graph-theoretic frame-based approach
e Requires O(dlogd) measurements
e Error guarantee similar to PhaseLift
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Overview of the Our Computational Framework

1 Use shifted compactly supported masks to obtain phase
difference estimates.

. solve _
ICirc(w)x|? —>"— 2,;Tjk, k=0,...,6
linear system
e w is a mask, or window, with é + 1 non-zero entries.
® 1;Tj. gives us the (scaled) difference in phase between

entries x; and x; 1.

Constraints on x: We require x to be non-sparse.
(The number of consecutive zeros in x should be less than §)
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Overview of the Our Computational Framework

1 Use shifted compactly supported masks to obtain phase
difference estimates.

. solve _
ICirc(w)x|? —>"— 2,;Tjk, k=0,...,6
linear system
e w is a mask, or window, with é + 1 non-zero entries.
® 1;Tj. gives us the (scaled) difference in phase between

entries x; and x; 1.

2 Solve an angular synchronization problem on the phase
differences to obtain the unknown signal.

_ angular
LjLj+k T
synchronization

Constraints on x: We require x to be non-sparse.
(The number of consecutive zeros in x should be less than §)
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Correlations with Support-Limited Functions

o Let x =[zg 21 ... 24_1]7 € C? be the unknown signal.

o Let w=[wpwy ... ws 0 ...0]7 denote a support-limited
mask. It has § + 1 non-zero entries.

e We are given the (squared) magnitude measurements
(b™)? = |circ(w™)x[*,  m=0,...,L

corresponding to L + 1 distinct masks.

6
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Correlations with Support-Limited Functions

Explicitly writing out each measurement, we have

2
0

)2 = | ST

j=0

— m———m —
= E w; w] l’k+jl'k+i
2,7=0

We can also lift these equations to a set of linear equations!

6
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Solving for Phase Differences

Ordering z, 7, lexicographically, we obtain a linear system of
equations for the phase differences.

Example: x e RY, d =4,0 =1

M, M,

((wh)” 2ufu}i(w)? 0 0 0 0 0 20T b
(w2 2wpwy i (wy)? __ 0r 0 0 0 0 0T by
0 0 (w§ )2 2wiw (u:‘f).2 0 0 0 1T b9

0 0 (wd)? 2wiwl (wh)? 0 0 0 T2 | |0

0 0 0 0 (w)? 2wiw) (w))? 0 xo® | | Y

0 0 0 0 (wd)? 2wiwl  (wi)? 0 23 b}
(w))? 0 0 0 0 0 2wiw)  (w))? T3T3 b9
(wh)? 0 0 0 0 0 2wiwi  (wi)? T30 b

———
M y

The system matrix M’ is block circulant!



Some Entries of the Measurement Matrix

Two strategies

e Random entries (Gaussian, Uniform, Bernoulli, . ..

e Structured measurements, e.g.,

—i/a 2mi-i-4 .
‘ { & el <9

Y = Y25+1
0, 1>0

w

where ¢ := max{4, 5%1} and 0 < ¢ < L.
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Structured Measurements

Theorem (lwen, V., Wang 2015)

Choose entries of the measurement mask w™ as follows:

@,i/a ) 27i-i-£ . 6 _ 1
¢_) T T, 050 , @ := max {4, } , ¢ €0, L].
0, i>6 2

Then, the resulting system matrix for the phase differences, M’,
has condition number

/ 2 9¢? 2
k(M') < max { 144e ,T-(é—l) .

Note:

e w! are scaled entries of a DFT matrix.

e § is typically chosen to be 6-12.



Angular Synchronization

The Angular Synchronization Problem

Estimate d unknown angles 61,6s,...,0, € [0,27) from d(d + 1)
noisy measurements of their differences

Ab;j = Loy — Lxj = L (%) mod 27.
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Angular Synchronization

The unknown phases (modulo a global phase offset) may be
obtained by solving a simple greedy algorithm.

1 Set the largest magnitude component to have zero phase
angle; i.e.,

Lx =0, k := argmax x;T;.
7

2 Use this entry to set the phase angles of the next § entries;
ie.,

Z:széxk—Aekj, j:1,,(5

3 Use the next largest magnitude component from these ¢
entries and repeat the process.
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Recovering Arbitrary Vectors

o Recall: Due to compact support of our masks, only " flat”
vectors can be recovered

o Arbitrary vectors can be "flattened” by multiplication with a
random unitary matrix such as W = PF' B, where

e P €{0,1}%%4 is a permutation matrix selected uniformly at
random from the set of all d x d permutation matrices

e [ is the unitary d x d discrete Fourier transform matrix

e Be{-1,0,1}%*% is a random diagonal matrix with i.i.d.
symmetric Bernoulli entries on its diagonal
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A Noiseless Recovery Result

Theorem (lwen, V., Wang 2015)

Let x € C® with d sufficiently large. Then, one can select a
random measurement matrix M € CP*? such that the following

holds with probability at least 1 — Wllnmnd): Our algorithm

will recover an X € C% with

min
0€[0,27]

X — eﬁeiH =0
2

when given the noiseless magnitude measurements | Mx|*> € RP.
Here D can be chosen to be O(d - In%(d) - In® (Ind)). Furthermore,
the algorithm will run in O(d - In3(d) - In® (In d))-time in that case.

To do: Robustness to measurement noise...



Efficiency

Execution Time (D = 5d Measurements)

102

10t E|
B e iid Complex Gaussian
E signal
B oo 4 . .
" e High SNR applications
g e 5d measurements
=

ol ] e 64k problem in ~ 20 s in

Matlab!
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Problem Dimension, d
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Robustness

Reconstruction Error (dB)

Robustness to Additive Noise, d = 64, D = Td
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Robustness

Reconstruction Error (dB)
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Robustness to Additive Noise, d = 2048
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The Sparse Phase Retrieval Problem

find xe C? given |Mx|=becRP,
where
e X is s-sparse, with s < d.

e b € R” are the magnitude or intensity measurements.

e M e CP*d s 3 measurement matrix associated with these
measurements.

Let A: RP — ©9 denote the recovery method.

The sparse phase retrieval problem involves designing measurement
matrix and recovery method pairs.
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Sublinear-time Results
Theorem (lwen, V., Wang 2015)

There exists a deterministic algorithm A : RP — C¢ for which the
following holds: Let € € (0, 1], x € C¢ with d sufficiently large, and
s € [d]. Then, one can select a random measurement matrix

M e ©CP*? such that

22¢ H xCPt

X(s/0)
NG

4 Here D can

min
0€[0,27]

ewx_“AOMX‘?)HQ < e — %, %Pt |,+

is true with probability at least 1 — m.

be chosen to be O (£ -In*(£) - In® (ln ) -Ind). Furthermore, the
algorithm will run in O (£ -In? () In® (In %) -Ind)-time in that
case.b

aHere C' € R is a fixed absolute constant.
bFor the sake of simplicity, we assume s = Q(log d) when stating the
measurement and runtime bounds above.
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Software Repository

8 charms / blockPf

€« C' i | @ Atlassian, Inc. [US] https://bitbucket.org/charms/blockpr

Teams ~  Repositori Create

charms
blockPR

ACTIONS

&, clone

1® create branch
5 Create pull request
% Compare

< Fork
NAVIGATION

il Overview

@ souce

$  commits

b Branches
 Pullrequests

@ ==

O wik

< Downloads 1

Overview SSH~  git@bitbucket.org:charms/blockpr.git  [2 Shae @ © ~
1 1 i *
Last updated ~ 2015-01-09 Invite users to this repo
Language MATLAB Branch Tag
el Adrin k)
Forks Watchers

# Edit README

BlockPR: Matlab Software for Phase Retrieval using Block-
Circulant Measurement Constructions

“This repository contains Matlab code for solving the phase retrieval problem. Details of the method,
theoretical guarantees and representative numerical results can be found in

Fast Phase Retrieval for High-Dimensions

Mark Iwen, Aditya Viswanthan and Yang Wang

2015

This software was developed at the Department of Mathematics, Michigan State University and is released
under the MIT license.

The software was developed and tested using Matiab R2014a and uses TFOCS, a Matiab software
package for the efficient construction and solution of convex optimization problems. A copy of the TFOCS
package is included under the third party software directory at third!

Directorv Strictiure and Contents

Recent activity

B L commi

Pushed to charms/blockPR

1eq57o1 Fixed typos in readme
Adtya Viswanainan - 2015-01-09
B 2 commit
Pushed to charms/blockPR
ce9tsac Added TFOCS for later use with
Adtya Viswanainan - 2015-01-09
B 2 commit
Pushed to charms/blockPR
ce8ro6r Misc. format edits; Added Al Pro.
Adtya Viswanainan - 2015-01-09
B} 12 commits
Pushed to charms/blockPR
0067560 Meraed in complex (pull equest ..~
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Software Repository

8 charms / sparsepi

€« C # | Atlassian, Inc. [US] https://bitbucket.org/charms/sparsepr

Teams ~

Repositories ~

Create

0 charms
sparsepr
AcTIONS

&, clone

1® create branch
5 Create pull request
% Compare
< Fork
NAVIGATION

il Overview
@ souce

$  commits
b Branches
ch  Pull requests

< Downloads 1

£ setings

Overview SSH~
Lastupdated  2014-11-08 2 0
Language MATLAB Branches Tags
Access level  Admin (revoke)
Forks Watchers

# Edit README

SparsePR: Matlab Software for Sparse Phase Retrieval

“This repository contains Matlab code for solving the sparse phase retrieval problem. Details of the method,
theoretical guarantees and representative numerical resuls can be found in

Robust Sparse Phase Retrieval Made Easy
Mark Iwen, Aditya Viswanthan and Yang Wang
ariv

2014

“This software was developed at the Department of Mathematics, Michigan State University and is released
under the MIT license.

The software was developed and tested using Matiab R2014a and uses TFOCS, a Matlab software
package for the eficient construction and solution of convex optimization problems. A copy of the TFOCS
package is included under the third party software directory at third/. A selection of scripts also uses the
CVX optimization software, which can be downloaded here.

git@bitbucket.org:charns/sparsepr.gi

share | © |~

Recent activity
B} 1 commit
Pushed to chams/sparsepr
43314 Now uses a single routine to gen

Adtya Viswanathan - 2014-11.08

B} 1 commit
Pushed to chams/sparsepr

4469988 Added link to preprint at arXiv in t

Acdiya Viswanaihan - 2014-10-24
B} 1 commit
Pushed to chamms/sparsepr
469782a Fixed SparsePR runtime/no. of m.
Aty Viswanaihan - 2014-10-16
B} 1 commit
Pushed to chamms/sparsepr
2577754 Initial commit
Ay Viswanaihan - 2014-10-15
B} charms/sparsepr

Repository created
Aditya Viswanathan - 2014-10-15




