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The Phase Retrieval Problem

find1 x ∈ Cd given yi = |〈ai,x〉|2 + ηi i ∈ [D],

where

• yi ∈ R denotes the phaseless (or magnitude-only)
measurements (D measurements acquired),

• ai ∈ Cd are known (by design or estimation) measurement
vectors, and

• ηi ∈ R is measurement noise.

1(upto a global phase offset)
1 / 23



Motivating Applications

From Huang, Xiaojing, et al. “Fly-scan ptychography.” Scientific Reports 5 (2015).

The Phase Retrieval problem arises in many molecular imaging
modalities, including

• X-ray crystallography

• Ptychography

Other applications can be found in optics, astronomy and speech
processing.
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Motivating Applications

From Huang, Xiaojing, et al. “Fly-scan ptychography.” Scientific Reports 5 (2015).

The Phase Retrieval problem arises in many molecular imaging
modalities, including

• X-ray crystallography

• Ptychography – this (local measurements) will be our main focus

Other applications can be found in optics, astronomy and speech
processing.
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Existing Computational Approaches

• Alternating projection methods
[Fienup, 1978], [Marchesini et al., 2006], [Fannjiang, Liao, 2012]

and many others. . .

• Methods based on semidefinite programming
PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al.,

2012], . . .

• Others
• Frame-theoretic, graph based algorithms [Alexeev et al., 2014]

• (Stochastic) gradient descent [Candes et al., 2014]

. . . and variants for sparse and/or structured signal models.
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and many others. . .

• Methods based on semidefinite programming
PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al.,

2012], . . .

• Others
• Frame-theoretic, graph based algorithms [Alexeev et al., 2014]

• (Stochastic) gradient descent [Candes et al., 2014]

Most methods (with recovery guarantees) require global, random
measurement constructions.
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Today. . .

• We discuss a recently introduced essentially linear-time robust
phase retrieval algorithm based on (deterministic2) local
correlation measurement constructions.

• We provide rigorous theoretical recovery guarantees and
present numerical results showing the accuracy, efficiency and
robustness of the method.

2for a large class of real-world signals
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Outline

1 The Phase Retrieval Problem

2 BlockPR: Fast Phase Retrieval from Local Correlation
Measurements

Measurement Constructions
Solving for Phase Differences
Angular Synchronization

3 Theoretical Guarantees

4 Numerical Simulations



Measurement Constructions

Adapted from Huang et al. “Fly-scan ptychography.” Scientific Reports 5 (2015).

• We consider measurements motivated by Ptychographic
molecular imaging.

• Measurements are local; the full reconstruction is obtained by
imaging shifts of the specimen.
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Our Model

Each ai is a shift of a locally-supported vector

mj ∈ Cd, supp(mj) = [δ] ⊂ [d], j = 1, . . . ,K

Define the discrete circular shift operator

S` : Cd → C
d, with (S`x)j = x`+j .

Our measurements are then

(y`)j = |〈x, S∗`mj〉|2+ηj`, (j, `) ∈ [K]×P, P ⊂ {0, . . . , d−1}

We will consider K ≈ 2δ − 1 and P = [d]0 := {0, . . . , d− 1}.

6 / 23



What are we Measuring?

Our squared magnitude measurements can be written in terms of a
lifted set of variables

|〈x, S∗`mj〉|2 = 〈xx∗, S∗`mjm
∗
jS`〉

Figure: Left and center: d× d matrices where the shaded δ× δ blocks are
the support of S∗

`mjm
∗
jS`, ` = 1, 2.

Right: shaded region is the union of the supports of S∗
`mjm

∗
jS`, ` ∈ [d]0.
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What are we Measuring?

Our squared magnitude measurements can be written in terms of a
lifted set of variables

|〈x, S∗`mj〉|2 = 〈xx∗, S∗`mjm
∗
jS`〉

The only entries of xx∗ that we can hope to recover (by linear
inversion) are those supported on a (circulant) band.

Defining the restriction operator Tk : Cd×d → Cd×d given by

Tk(G)ij =

{
Gij , |i− j| mod d < k

0, otherwise.

|〈x, S∗`mj〉|2 = 〈xx∗, S∗`mjm
∗
jS`〉 = 〈Tδ(xx∗), S∗`mjm

∗
jS`〉
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The Bottom Line

If Span{S∗`mjm
∗
jS`}`,j = Tδ(C

d×d), we can recover Tδ(xx
∗).

What does this give us?

1 Diagonal entries of Tδ(xx
∗) are |xi|2.

2 Leading eigenvector of Tδ

(
xx∗

|xx∗|

)
(appropriately normalized)

is the vector of phases of x.
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What does this give us?

1 Diagonal entries of Tδ(xx
∗) are |xi|2.

2 Leading eigenvector of Tδ

(
xx∗

|xx∗|

)
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is the vector of phases of x.

Why? Tδ

(
xx∗
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)
= diag

(
x

|x|

)
Tδ(11

∗)diag

(
x∗

|x|

)
= diag

(
x

|x|

)
FΛF ∗diag

(
x∗

|x|

)
Hence, leading eigenvector of Tδ(xx

∗) gives the phase vector
x
|x| (upto a global phase factor).
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An Example. . . (d = 4, δ = 2)

Our local correlation measurements can be written as

(y`)i =

∣∣∣∣∣
δ=2∑
k=1

(m`)k · xi+k−1

∣∣∣∣∣
2

, (`, i) ∈ {1, 2, 3} × {1, 2, 3, 4}

=

δ∑
j,k=1

(m`)j (m`)
∗
k xi+j−1 x

∗
i+k−1 :=

δ∑
j,k=1

(m`)j,k xi+j−1 x
∗
i+k−1.

This is a linear system for the phase differences {xjx∗k}!

Note: the masks m{1,2,3} are known - either by design or through
calibration.
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Solving for Phase Differences

Writing out the correlation sum, we obtain the linear system

M ′ z = b̃,

where

z =
[
|x1|2 x1x

∗
2 x2x

∗
1 |x2|2 x2x

∗
3 x3x

∗
2 |x3|2 x3x

∗
4 x4x

∗
3 |x4|2 x4x

∗
1 x1x

∗
4

]T
,

b̃ =
[
(y1)1 (y2)1 (y3)1 (y1)2 (y2)2 (y3)2 (y1)3 (y2)3 (y3)3 (y1)4 (y2)4 (y3)4

]T
,

M ′=



(m1)1,1 (m1)1,2 (m1)2,1 (m1)2,2 0 0 0 0 0 0 0 0
(m2)1,1 (m2)1,2 (m2)2,1 (m2)2,2 0 0 0 0 0 0 0 0
(m3)1,1 (m3)1,2 (m3)2,1 (m3)2,2 0 0 0 0 0 0 0 0

0 0 0 (m1)1,1 (m1)1,2 (m1)2,1 (m1)2,2 0 0 0 0 0
0 0 0 (m2)1,1 (m2)1,2 (m2)2,1 (m2)2,2 0 0 0 0 0
0 0 0 (m3)1,1 (m3)1,2 (m3)2,1 (m3)2,2 0 0 0 0 0
0 0 0 0 0 0 (m1)1,1 (m1)1,2 (m1)2,1 (m1)2,2 0 0
0 0 0 0 0 0 (m2)1,1 (m2)1,2 (m2)2,1 (m2)2,2 0 0
0 0 0 0 0 0 (m3)1,1 (m3)1,2 (m3)2,1 (m3)2,2 0 0

(m1)2,2 0 0 0 0 0 0 0 0 (m1)1,1 (m1)1,2 (m1)2,1
(m2)2,2 0 0 0 0 0 0 0 0 (m2)1,1 (m2)1,2 (m2)2,1
(m3)2,2 0 0 0 0 0 0 0 0 (m3)1,1 (m3)1,2 (m3)2,1
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Back to our Example . . .[
|x1|2 x1x∗2 x2x∗1 |x2|2 x2x∗3 x3x∗2 |x3|2 x3x∗4 x4x∗3 |x4|2 x4x∗1 x1x∗4

]Ty(re-arrange)
|x1|2 x1x

∗
2 0 x1x

∗
4

x2x
∗
1 |x2|2 x2x

∗
3 0

0 x3x
∗
2 |x3|2 x3x

∗
4

x4x
∗
1 0 x4x

∗
3 |x4|2

 (2δ − 1 entries in band)

y(normalize)
1 ei(φ1−φ2) 0 ei(φ1−φ4)

ei(φ2−φ1) 1 ei(φ2−φ3) 0

0 ei(φ3−φ2) 1 ei(φ3−φ4)

ei(φ4−φ1) 0 ei(φ4−φ3) 1


y(angular synchronization)

φ1, φ2, φ3, φ4

(Signal Reconstruction)
[
|x1|eiφ1 |x2|eiφ2 |x3|eiφ3 |x4|eiφ4

]T
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BlockPR – Algorithmic Components

1 Local Measurements: Each measurement provides
information about some local region of x.

2 Local Lifting: Use compactly supported masks and
correlation measurements to obtain phase difference estimates.

|Corr(mi,x)|2 solve−−−−−−−−→
linear system

{xjx∗k}|j−k mod d<δ|

• mi is a mask or window function with δ non-zero entries.
• xjx

∗
k provides (scaled) phase difference between xj and xk.

3 Angular Synchronization: Use the phase differences to
obtain the phases of the unknown signal.

{xjx∗k}|j−k mod d<δ|
angular−−−−−−−−−−→

synchronization
{xj}dj=1

Computational Complexity: O(δ2 · d log d+ d · δ3)
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Well-Conditioned Linear Systems

Theorem (Iwen, V., Wang 2015)

Choose entries of the measurement mask (mi) as follows:

(mi)` =

{
e−`/a
4√2δ−1 · e

2πi·i·`
2δ−1 , ` ≤ δ

0, ` > δ
,

a := max
{

4, δ−12
}
,

i = 1, 2, . . . , N.

Then, the resulting system matrix for the phase differences, M ′,
has condition number

κ(M ′) < max

{
144e2,

9e2

4
· (δ − 1)2

}
.

• Deterministic (windowed DFT-type) measurement masks!

• δ is typically chosen to be c log2 d with c small (2–3).

• Extensions: oversampling, random masks . . . .
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Well-Conditioned Linear Systems

Mask Construction II (Iwen, Preskitt, Saab, V. 2016)

Choose entries of the measurement mask (mi) as follows:
For i = 1, 2, . . . , δ − 1

m1 = e1

m2i = e1 + ei+1

m2i+1 = e1 − iei+1

Then, the resulting system matrix for the phase differences, M ′,
has condition number

κ(M ′) < cδ.
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Recovery Guarantee

Theorem (Iwen, Preskitt, Saab, V. 2016)

Let xmin := minj |xj | be the smallest magnitude of any entry in x.
Then, the estimate z produced by the proposed BlockPR
Algorithm satisfies

min
θ∈[0,2π]

∥∥∥x− eiθz∥∥∥
2
≤ C

(
‖x‖∞
x2min

)(
d

δ

)2

κ‖η‖2 + Cd
1
4

√
κ‖η‖2,

where C ∈ R+ is an absolute universal constant.

• This result yields a deterministic recovery result for any signal
x which contains no zero entries.

• A randomized result can be derived for arbitrary x by right
multiplying the signal x with a random “flattening” matrix.
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Main Elements of the Proof

1 Well-conditioned measurements:

• Linear system for the lifted variables is block-circulant

• Bound condition number of each block to find κ.

2 (Reconstruction error) ≈ (Phase error) + (Magnitude error)

• Magnitude error (second term in error guarantee) – follows
from error in inverting linear system for lifted variables

• Phase error (first term in error guarantee) – evaluate
eigenvalue gap + Cheeger inequality of [Bandeira et al. 2013]
+ adaptation of proof method from [Alexeev et al. 2014]

Note: Bound not optimized; for example, magnitude estimation
can be improved!
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Simulation Parameters

• Signal: complex Gaussian test signals

• Noise: iid additive Gaussian noise

• Measurements: local, deterministic (complex, constructed
using canonical bases – from §2.1)

• data points obtained by averaging over 100 trials

• simulations performed in Matlab on a laptop computer

• for PhaseLift – implemented in CVX as a trace regularized
least squares problem

• for Alternating Projections – random complex Gaussian initial
guess, max. iterations = 10, 000
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Efficiency – FFT–time phase retrieval

10 1 10 2 10 3 10 4 10 5

Problem Size, d
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Execution Time (D = d2d log2(d)e measurements)

PhaseLift

Alternating Projections

BlockPR

O(d3)

O(d log2 d)
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Local vs Global Measurements
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Robustness to Measurement Errors
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Reconstruction Error vs. No. of Measurements
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In Summary. . .

• BlockPR allows for essentially linear-time robust phase
retrieval from local correlation measurement constructions.

• Deterministic measurements for flat vectors.

• Global robust recovery guarantee for phase retrieval from
local correlation (ptychographic) measurements.

• Improved robustness from eigenvector-based angular
synchronization.

Current and Future Directions

• (Sublinear-time) compressive phase retrieval

• Extensions to 2D and Ptychographic data sets

• Continuous/infinite dimensional formulation (coming SAMPTA 2017. . . ?)

21 / 23



Publications/Preprints/Code (see https://math.msu.edu/∼aditya)

This Talk

M. Iwen, B. Preskitt, R. Saab and A. Viswanathan. “Phase Retrieval

from Local Measurements: Improved Robustness via Eigenvector-Based

Angular Synchronization.” arXiv:1612.01182, 2016.

Related Work

M. Iwen, A. Viswanathan, and Y. Wang. “Fast Phase Retrieval from

Local Correlation Measurements.” SIAM J. Imag. Sci., Vol. 9, Issue 4,

pp. 1655–1688, Oct. 2016.

M. Iwen, A. Viswanathan, and Y. Wang. “Robust Sparse Phase Retrieval

Made Easy.” Vol. 42, pp. 135–142, 2017.

Code:
https://bitbucket.org/charms/blockpr (this talk)

https://bitbucket.org/charms/sparsepr (sparse phase retrieval)
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Questions?
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