Robust and Fast Phase Retrieval from Local Correlation Measurements

Aditya Viswanathan
aditya@math.msu.edu
www.math.msu.edu/~aditya

AMS Special Session: Mathematics of Signal Processing and Information
The Joint Math Meetings, Atlanta, GA
Jan 7, 2017
Current and Previous Collaborators

Research supported in part by National Science Foundation grant DMS 1043034.
The Phase Retrieval Problem

\[\text{find}^1 \ \mathbf{x} \in \mathbb{C}^d \ \text{given} \ \ y_i = |\langle \mathbf{a}_i, \mathbf{x} \rangle|^2 + \eta_i \quad i \in [D], \]

where

- \(y_i \in \mathbb{R} \) denotes the phaseless (or magnitude-only) measurements (\(D \) measurements acquired),
- \(\mathbf{a}_i \in \mathbb{C}^d \) are known (by design or estimation) measurement vectors, and
- \(\eta_i \in \mathbb{R} \) is measurement noise.

\(^1\text{(upto a global phase offset)}\)
Motivating Applications

The Phase Retrieval problem arises in many molecular imaging modalities, including

- X-ray crystallography
- Ptychography

Other applications can be found in optics, astronomy and speech processing.

The Phase Retrieval problem arises in many molecular imaging modalities, including

- X-ray crystallography
- Ptychography – this (local measurements) will be our main focus

Other applications can be found in optics, astronomy and speech processing.
Existing Computational Approaches

• Alternating projection methods
 [Fienup, 1978], [Marchesini et al., 2006], [Fannjiang, Liao, 2012] and many others...

• Methods based on semidefinite programming
 PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al., 2012], ...

• Others
 • Frame-theoretic, graph based algorithms [Alexeev et al., 2014]
 • (Stochastic) gradient descent [Candes et al., 2014]

... and variants for sparse and/or structured signal models.
Existing Computational Approaches

- Alternating projection methods
 [Fienup, 1978], [Marchesini et al., 2006], [Fannjiang, Liao, 2012] and many others...

- Methods based on semidefinite programming
 PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al., 2012], ...

- Others
 - Frame-theoretic, graph based algorithms [Alexeev et al., 2014]
 - (Stochastic) gradient descent [Candes et al., 2014]

Most methods (with recovery guarantees) require global, random measurement constructions.
Today...

- We discuss a recently introduced essentially linear-time robust phase retrieval algorithm based on (deterministic\(^2\)) local correlation measurement constructions.

- We provide rigorous theoretical recovery guarantees and present numerical results showing the accuracy, efficiency and robustness of the method.

\(^2\)for a large class of real-world signals
Outline

1. The Phase Retrieval Problem

2. BlockPR: Fast Phase Retrieval from Local Correlation Measurements
 - Measurement Constructions
 - Solving for Phase Differences
 - Angular Synchronization

3. Theoretical Guarantees

4. Numerical Simulations
We consider measurements motivated by Ptychographic molecular imaging.

Measurements are local; the full reconstruction is obtained by imaging shifts of the specimen.
Our Model

Each a_i is a shift of a locally-supported vector

$$m_j \in \mathbb{C}^d, \quad \text{supp}(m_j) = [\delta] \subset [d], \quad j = 1, \ldots, K$$

Define the discrete circular shift operator

$$S_\ell : \mathbb{C}^d \rightarrow \mathbb{C}^d, \quad \text{with} \quad (S_\ell x)_j = x_{\ell+j}.$$

Our measurements are then

$$(y_\ell)_j = |\langle x, S_\ell^* m_j \rangle|^2 + \eta_{j\ell}, \quad (j, \ell) \in [K] \times P, \quad P \subset \{0, \ldots, d-1\}$$

We will consider $K \approx 2\delta - 1$ and $P = [d]_0 := \{0, \ldots, d - 1\}$.
What are we Measuring?

Our squared magnitude measurements can be written in terms of a lifted set of variables

\[|\langle x, S^*_\ell m_j \rangle|^2 = \langle xx^*, S^*_\ell m_j m^*_j S_\ell \rangle \]

Figure: Left and center: $d \times d$ matrices where the shaded $\delta \times \delta$ blocks are the support of $S^*_\ell m_j m^*_j S_\ell$, $\ell = 1, 2$.
Right: shaded region is the union of the supports of $S^*_\ell m_j m^*_j S_\ell$, $\ell \in [d]_0$.
What are we Measuring?

Our squared magnitude measurements can be written in terms of a lifted set of variables

$$|\langle x, S^*_\ell m_j \rangle|^2 = \langle xx^*, S^*_\ell m_j m^*_j S_\ell \rangle$$

The only entries of xx^* that we can hope to recover (by linear inversion) are those supported on a (circulant) band.

Defining the restriction operator $T_k : \mathbb{C}^{d \times d} \rightarrow \mathbb{C}^{d \times d}$ given by

$$T_k(G)_{ij} = \begin{cases} G_{ij}, & |i - j| \text{ mod } d < k \\ 0, & \text{otherwise.} \end{cases}$$

$$|\langle x, S^*_\ell m_j \rangle|^2 = \langle xx^*, S^*_\ell m_j m^*_j S_\ell \rangle = \langle T_\delta(xx^*), S^*_\ell m_j m^*_j S_\ell \rangle$$
If \(\text{Span}\{S^*_\ell m_j m^*_j S_{\ell}\}_{\ell,j} = T_\delta(\mathbb{C}^{d \times d}) \), we can recover \(T_\delta(xx^*) \).

What does this give us?

1. Diagonal entries of \(T_\delta(xx^*) \) are \(|x_i|^2 \).
2. Leading eigenvector of \(T_\delta \left(\frac{xx^*}{|xx^*|} \right) \) (appropriately normalized) is the vector of phases of \(x \).
If \(\text{Span}\{S_{\ell}^*m_j m_j^* S_{\ell}\}_{\ell,j} = T_\delta(\mathbb{C}^{d\times d}) \), we can recover \(T_\delta(xx^*) \).

What does this give us?

1. Diagonal entries of \(T_\delta(xx^*) \) are \(|x_i|^2 \).
2. Leading eigenvector of \(T_\delta \left(\frac{xx^*}{|xx^*|} \right) \) (appropriately normalized) is the vector of phases of \(x \).
The Bottom Line

If \(\text{Span}\{S^*_\ell m^*_j m^*_j S^*_\ell\}_{\ell,j} = T_\delta(\mathbb{C}^{d \times d}) \), we can recover \(T_\delta(\mathbf{x}\mathbf{x}^*) \).

What does this give us?

1. Diagonal entries of \(T_\delta(\mathbf{x}\mathbf{x}^*) \) are \(|x_i|^2 \).
2. Leading eigenvector of \(T_\delta\left(\frac{\mathbf{x}\mathbf{x}^*}{|\mathbf{x}\mathbf{x}^*|}\right) \) (appropriately normalized) is the vector of phases of \(\mathbf{x} \).

Why?

\[
T_\delta\left(\frac{\mathbf{x}\mathbf{x}^*}{|\mathbf{x}\mathbf{x}^*|}\right) = \text{diag} \left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) T_\delta(\mathbf{1}\mathbf{1}^*) \text{diag} \left(\frac{\mathbf{x}^*}{|\mathbf{x}|}\right) \\
= \text{diag} \left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) F\Lambda F^* \text{diag} \left(\frac{\mathbf{x}^*}{|\mathbf{x}|}\right)
\]
If \(\text{Span}\{S_{\ell}^*m_jm_j^*S_{\ell}\}_{\ell,j} = T_\delta(\mathbb{C}^{d\times d}) \), we can recover \(T_\delta(xx^*) \).

What does this give us?

1. Diagonal entries of \(T_\delta(xx^*) \) are \(|x_i|^2 \).
2. Leading eigenvector of \(T_\delta\left(\frac{xx^*}{|xx^*|}\right) \) (appropriately normalized) is the vector of phases of \(x \).

Why?

\[
T_\delta\left(\frac{xx^*}{|xx^*|}\right) = \text{diag}\left(\frac{x}{|x|}\right) T_\delta(11^*)\text{diag}\left(\frac{x^*}{|x|}\right)
\]

\[
= \text{diag}\left(\frac{x}{|x|}\right) F\Lambda F^*\text{diag}\left(\frac{x^*}{|x|}\right)
\]

Hence, leading eigenvector of \(T_\delta(xx^*) \) gives the phase vector \(\frac{x}{|x|} \) (upto a global phase factor).
An Example... \((d = 4, \delta = 2)\)

Our *local correlation measurements* can be written as

\[
(y_{\ell})_i = \left| \sum_{k=1}^{\delta=2} (m_{\ell})_k \cdot x_{i+k-1} \right|^2, \quad (\ell, i) \in \{1, 2, 3\} \times \{1, 2, 3, 4\}
\]

\[
= \sum_{j, k=1}^{\delta} (m_{\ell})_j (m_{\ell})_k^* x_{i+j-1} x_{i+k-1} := \sum_{j, k=1}^{\delta} (m_{\ell})_{j,k} x_{i+j-1} x_{i+k-1}^*.
\]

This is a *linear* system for the phase differences \(\{x_j x_k^*\}\)!

Note: the masks \(m_{\{1,2,3\}}\) are known - either by design or through calibration.
Solving for Phase Differences

Writing out the correlation sum, we obtain the linear system

\[M' \mathbf{z} = \tilde{\mathbf{b}}, \]

where

\[\mathbf{z} = \begin{bmatrix} |x_1|^2 & x_1x_2^* & x_2x_3^* & |x_2|^2 & x_2x_3^* & x_3x_4^* & |x_3|^2 & x_3x_4^* & |x_4|^2 & x_4x_1^* & x_1x_4^* \end{bmatrix}^T, \]

\[\tilde{\mathbf{b}} = \begin{bmatrix} (y_1)_1 & (y_2)_1 & (y_3)_1 & (y_1)_2 & (y_2)_2 & (y_3)_2 & (y_1)_3 & (y_2)_3 & (y_3)_3 & (y_1)_4 & (y_2)_4 & (y_3)_4 \end{bmatrix}^T, \]

\[M' = \begin{bmatrix} (m_1)_{1,1} & (m_1)_{1,2} & (m_1)_{2,1} & (m_1)_{2,2} & 0 & 0; & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \(m_2)_{1,1} & (m_2)_{1,2} & (m_2)_{2,1} & (m_2)_{2,2} & 0 & 0; & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \(m_3)_{1,1} & (m_3)_{1,2} & (m_3)_{2,1} & (m_3)_{2,2} & 0 & 0; & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]
Back to our Example . . .

$$\begin{bmatrix} |x_1|^2 & x_1x_2^* & x_2x_1^* & |x_2|^2 & x_2x_3^* & x_3x_2^* & |x_3|^2 & x_3x_4^* & x_4x_3^* & |x_4|^2 & x_4x_1^* & x_1x_4^* \end{bmatrix}^T$$

(re-arrange)

$$\begin{bmatrix} |x_1|^2 & x_1x_2^* & 0 & x_1x_4^* \\ x_2x_1^* & |x_2|^2 & x_2x_3^* & 0 \\ 0 & x_3x_2^* & |x_3|^2 & x_3x_4^* \\ x_4x_1^* & 0 & x_4x_3^* & |x_4|^2 \end{bmatrix}$$

(2δ − 1 entries in band)

(normalize)

$$\begin{bmatrix} 1 & e^{i(\phi_1-\phi_2)} & 0 & e^{i(\phi_1-\phi_4)} \\ e^{i(\phi_2-\phi_1)} & 1 & e^{i(\phi_2-\phi_3)} & 0 \\ 0 & e^{i(\phi_3-\phi_2)} & 1 & e^{i(\phi_3-\phi_4)} \\ e^{i(\phi_4-\phi_1)} & 0 & e^{i(\phi_4-\phi_3)} & 1 \end{bmatrix}$$

(angular synchronization)

$$\phi_1, \phi_2, \phi_3, \phi_4$$

(Signal Reconstruction)

$$\begin{bmatrix} |x_1|e^{i\phi_1} & |x_2|e^{i\phi_2} & |x_3|e^{i\phi_3} & |x_4|e^{i\phi_4} \end{bmatrix}^T$$
Back to our Example . . .

\[
\begin{bmatrix}
|x_1|^2 & x_1x_2^* & x_2x_1^* & |x_2|^2 & x_2x_3^* & x_3x_2^* & |x_3|^2 & x_3x_4^* & x_4x_3^* & |x_4|^2 & x_4x_1^* & x_1x_4^*
\end{bmatrix}^T
\]

\[
\downarrow \text{(re-arrange)}
\]

\[
\begin{bmatrix}
|x_1|^2 & x_1x_2^* & 0 & x_1x_4^* \\
-x_2x_1^* & |x_2|^2 & x_2x_3^* & 0 \\
0 & -x_3x_2^* & |x_3|^2 & x_3x_4^* \\
x_4x_1^* & 0 & -x_4x_3^* & |x_4|^2
\end{bmatrix}
\]

\[
\downarrow \text{(normalize)}
\]

\[
\begin{bmatrix}
1 & e^{i(\phi_1-\phi_2)} & 0 & e^{i(\phi_1-\phi_4)} \\
e^{i(\phi_2-\phi_1)} & 1 & e^{i(\phi_2-\phi_3)} & 0 \\
0 & e^{i(\phi_3-\phi_2)} & 1 & e^{i(\phi_3-\phi_4)} \\
e^{i(\phi_4-\phi_1)} & 0 & e^{i(\phi_4-\phi_3)} & 1
\end{bmatrix}
\]

\[
\downarrow \text{(angular synchronization)}
\]

\[
\phi_1, \phi_2, \phi_3, \phi_4
\]

(Signal Reconstruction) \[
\begin{bmatrix}
|x_1|e^{i\phi_1} & |x_2|e^{i\phi_2} & |x_3|e^{i\phi_3} & |x_4|e^{i\phi_4}
\end{bmatrix}^T
\]
Back to our Example . . .

$$\begin{bmatrix} |x_1|^2 & x_1 x_2^* & x_2 x_1^* & |x_2|^2 & x_2 x_3^* & x_3 x_2^* & |x_3|^2 & x_3 x_4^* & x_4 x_3^* & |x_4|^2 & x_4 x_1^* & x_1 x_4^* \end{bmatrix}^T$$

(re-arrange)

$$\begin{bmatrix} |x_1|^2 & x_1 x_2^* & 0 & x_1 x_4^* \\
 x_2 x_1^* & |x_2|^2 & x_2 x_3^* & 0 \\
 0 & x_3 x_2^* & |x_3|^2 & x_3 x_4^* \\
x_4 x_1^* & 0 & x_4 x_3^* & |x_4|^2 \end{bmatrix}$$

(2\(\delta\) – 1 entries in band)

(normalize)

$$\begin{bmatrix} 1 & e^{i(\phi_1-\phi_2)} & 0 & e^{i(\phi_1-\phi_4)} \\
e^{i(\phi_2-\phi_1)} & 1 & e^{i(\phi_2-\phi_3)} & 0 \\
0 & e^{i(\phi_3-\phi_2)} & 1 & e^{i(\phi_3-\phi_4)} \\
e^{i(\phi_4-\phi_1)} & 0 & e^{i(\phi_4-\phi_3)} & 1 \end{bmatrix}$$

(angular synchronization)

\(\phi_1, \phi_2, \phi_3, \phi_4\)

(Signal Reconstruction)

$$\begin{bmatrix} |x_1|e^{i\phi_1} & |x_2|e^{i\phi_2} & |x_3|e^{i\phi_3} & |x_4|e^{i\phi_4} \end{bmatrix}^T$$
Back to our Example . . .

\[
\left[|x_1|^2 \ x_1x_2^* \ x_2x_1^* \ |x_2|^2 \ x_2x_3^* \ x_3x_2^* \ |x_3|^2 \ x_3x_4^* \ x_4x_3^* \ |x_4|^2 \ x_4x_1^* \ x_1x_4^* \right]^T
\]

\[
\downarrow \text{(re-arrange)}
\]

\[
\begin{bmatrix}
|x_1|^2 & x_1x_2^* & 0 & x_1x_4^* \\
x_2x_1^* & |x_2|^2 & x_2x_3^* & 0 \\
0 & x_3x_2^* & |x_3|^2 & x_3x_4^* \\
x_4x_1^* & 0 & x_4x_3^* & |x_4|^2
\end{bmatrix}
\]

\[
\downarrow \text{(normalize)}
\]

\[
\begin{bmatrix}
1 & e^{i(\phi_1-\phi_2)} & 0 & e^{i(\phi_1-\phi_4)} \\
e^{i(\phi_2-\phi_1)} & 1 & e^{i(\phi_2-\phi_3)} & 0 \\
0 & e^{i(\phi_3-\phi_2)} & 1 & e^{i(\phi_3-\phi_4)} \\
e^{i(\phi_4-\phi_1)} & 0 & e^{i(\phi_4-\phi_3)} & 1
\end{bmatrix}
\]

\[
\downarrow \text{(angular synchronization)}
\]

\[
\phi_1, \phi_2, \phi_3, \phi_4
\]

(Signal Reconstruction) \[
\left[|x_1|e^{i\phi_1} \ x_2e^{i\phi_2} \ x_3e^{i\phi_3} \ x_4e^{i\phi_4} \right]^T
\]
Back to our Example . . .

\[
\begin{bmatrix}
|x_1|^2 & x_1x_2^* & x_2x_1^* & |x_2|^2 & x_2x_3^* & x_3x_2^* & |x_3|^2 & x_3x_4^* & x_4x_3^* & |x_4|^2 & x_4x_1^* & x_1x_4^*
\end{bmatrix}^T
\]

\[
\downarrow \text{(re-arrange)}
\]

\[
\begin{bmatrix}
|x_1|^2 & x_1x_2^* & 0 & x_1x_4^* \\
x_2x_1^* & |x_2|^2 & x_2x_3^* & 0 \\
x_3x_2^* & x_3x_3^* & |x_3|^2 & x_3x_4^* \\
x_4x_1^* & 0 & x_4x_3^* & |x_4|^2
\end{bmatrix}
\]

\[(2\delta - 1 \text{ entries in band})\]

\[
\downarrow \text{(normalize)}
\]

\[
\begin{bmatrix}
1 & e^{i(\phi_1-\phi_2)} & 0 & e^{i(\phi_1-\phi_4)} \\
e^{i(\phi_2-\phi_1)} & 1 & e^{i(\phi_2-\phi_3)} & 0 \\
0 & e^{i(\phi_3-\phi_2)} & 1 & e^{i(\phi_3-\phi_4)} \\
e^{i(\phi_4-\phi_1)} & 0 & e^{i(\phi_4-\phi_3)} & 1
\end{bmatrix}
\]

\[
\downarrow \text{(angular synchronization)}
\]

\[
\phi_1, \phi_2, \phi_3, \phi_4
\]

(Signal Reconstruction)

\[
\begin{bmatrix}
|x_1|e^{i\phi_1} & |x_2|e^{i\phi_2} & |x_3|e^{i\phi_3} & |x_4|e^{i\phi_4}
\end{bmatrix}^T
\]
BlockPR – Algorithmic Components

1 **Local Measurements**: Each measurement provides information about some local region of x.

2 **Local Lifting**: Use compactly supported masks and correlation measurements to obtain phase difference estimates.

\[
|\text{Corr}(m_i, x)|^2 \xrightarrow{\text{solve linear system}} \{x_j x_k^*\}_{|j-k| \mod d < \delta}
\]

- m_i is a mask or window function with δ non-zero entries.
- $x_j x_k^*$ provides (scaled) phase difference between x_j and x_k.

3 **Angular Synchronization**: Use the phase differences to obtain the phases of the unknown signal.

\[
\{x_j x_k^*\}_{|j-k| \mod d < \delta} \xrightarrow{\text{angular synchronization}} \{x_j\}_{j=1}^d
\]

Computational Complexity: $O(\delta^2 \cdot d \log d + d \cdot \delta^3)$
BlockPR – Algorithmic Components

1. **Local Measurements**: Each measurement provides information about some *local* region of x.

2. **Local Lifting**: Use compactly supported masks and correlation measurements to obtain phase difference estimates.

 \[
 \left| \text{Corr}(m_i, x) \right|^2 \xrightarrow{\text{solve linear system}} \{x_j x_k^*\}_{|j-k| \mod d<\delta}
 \]

 - m_i is a mask or window function with δ non-zero entries.
 - $x_j x_k^*$ provides (scaled) phase difference between x_j and x_k.

3. **Angular Synchronization**: Use the phase differences to obtain the phases of the unknown signal.

 \[
 \{x_j x_k^*\}_{|j-k| \mod d<\delta} \xrightarrow{\text{angular synchronization}} \{x_j\}_{j=1}^d
 \]

Computational Complexity: $O(\delta^2 \cdot d \log d + d \cdot \delta^3)$
BlockPR – Algorithmic Components

1 **Local Measurements**: Each measurement provides information about some *local* region of \(x \).

2 **Local Lifting**: Use compactly supported masks and correlation measurements to obtain phase difference estimates.

\[
|\text{Corr}(m_i, x)|^2 \xrightarrow{\text{solve linear system}} \{x_j x_k^*\}_{|j-k \mod d < \delta|}
\]
- \(m_i \) is a mask or window function with \(\delta \) non-zero entries.
- \(x_j x_k^* \) provides (scaled) phase difference between \(x_j \) and \(x_k \).

3 **Angular Synchronization**: Use the phase differences to obtain the phases of the unknown signal.

\[
\{x_j x_k^*\}_{|j-k \mod d < \delta|} \xrightarrow{\text{angular synchronization}} \{x_j\}_{j=1}^d
\]

Computational Complexity: \(\mathcal{O}(\delta^2 \cdot d \log d + d \cdot \delta^3) \)
Outline

1. The Phase Retrieval Problem

2. BlockPR: Fast Phase Retrieval from Local Correlation Measurements
 - Measurement Constructions
 - Solving for Phase Differences
 - Angular Synchronization

3. Theoretical Guarantees

4. Numerical Simulations
Theorem (Iwen, V., Wang 2015)

Choose entries of the measurement mask \((m_i)\) as follows:

\[
(m_i)_\ell = \begin{cases}
\frac{e^{-\ell/a}}{\sqrt{2\delta-1}} \cdot e^{\frac{2\pi i \cdot i \cdot \ell}{2\delta-1}}, & \ell \leq \delta \\
0, & \ell > \delta
\end{cases}, \quad i = 1, 2, \ldots, N.
\]

Then, the resulting system matrix for the phase differences, \(M'\), has condition number

\[
\kappa(M') < \max \left\{ 144e^2, \frac{9e^2}{4} \cdot (\delta - 1)^2 \right\}.
\]

- **Deterministic** (windowed DFT-type) measurement masks!
- \(\delta\) is typically chosen to be \(c \log_2 d\) with \(c\) small (2–3).
- Extensions: oversampling, random masks
Well-Conditioned Linear Systems

Mask Construction II (Iwen, Preskitt, Saab, V. 2016)

Choose entries of the measurement mask \((m_i)\) as follows:
For \(i = 1, 2, \ldots, \delta - 1\)

\[
\begin{align*}
m_1 &= e_1 \\
m_{2i} &= e_1 + e_{i+1} \\
m_{2i+1} &= e_1 - ie_{i+1}
\end{align*}
\]

Then, the resulting system matrix for the phase differences, \(M'\), has condition number

\[\kappa(M') < c\delta.\]
Recovery Guarantee

Theorem (Iwen, Preskitt, Saab, V. 2016)

Let \(x_{\text{min}} := \min_j |x_j| \) be the smallest magnitude of any entry in \(x \). Then, the estimate \(z \) produced by the proposed BlockPR Algorithm satisfies

\[
\min_{\theta \in [0,2\pi]} \| x - e^{i\theta} z \|_2 \leq C \left(\frac{\|x\|_\infty}{x_{\text{min}}^2} \right) \left(\frac{d}{\delta} \right)^2 \kappa \|\eta\|_2 + C d^{1/4} \sqrt{\kappa \|\eta\|_2},
\]

where \(C \in \mathbb{R}^+ \) is an absolute universal constant.

- This result yields a deterministic recovery result for any signal \(x \) which contains no zero entries.

- A randomized result can be derived for arbitrary \(x \) by right multiplying the signal \(x \) with a random “flattening” matrix.
Main Elements of the Proof

1. Well-conditioned measurements:
 - Linear system for the lifted variables is block-circulant
 - Bound condition number of each block to find κ.

2. (Reconstruction error) \approx (Phase error) + (Magnitude error)
 - Magnitude error (second term in error guarantee) – follows from error in inverting linear system for lifted variables

Note: Bound not optimized; for example, magnitude estimation can be improved!
Outline

1. The Phase Retrieval Problem

2. BlockPR: Fast Phase Retrieval from Local Correlation Measurements
 - Measurement Constructions
 - Solving for Phase Differences
 - Angular Synchronization

3. Theoretical Guarantees

4. Numerical Simulations
Simulation Parameters

- **Signal**: complex Gaussian test signals
- **Noise**: iid additive Gaussian noise
- **Measurements**: local, deterministic (complex, constructed using canonical bases – from §2.1)
- data points obtained by averaging over 100 trials
- simulations performed in Matlab on a laptop computer
- for **PhaseLift** – implemented in CVX as a trace regularized least squares problem
- for **Alternating Projections** – random complex Gaussian initial guess, max. iterations = 10,000
Efficiency — FFT–time phase retrieval

Execution Time ($D = \lceil 2d \log_2(d) \rceil$ measurements)
Local vs Global Measurements

Reconstruction Accuracy vs No. of Measurements, $d = 128$

- Wirtinger Flow (Local)
- BlockPR
- Wirtinger Flow (CDPs)
Robustness to Measurement Errors

Robustness to Measurement Noise, $d = 64$, $D = 7d$

- Alternating Projections
- PhaseLift
- BlockPR
Robustness to Measurement Errors

Robustness to Measurement Noise, $d = 64, D = 15d$

- Noise Level in SNR (dB)
- Reconstruction Error (in dB)
- Alternating Projections
- BlockPR
- PhaseLift
Reconstruction Error vs. No. of Measurements

Reconstruction Accuracy vs No. of Measurements, \(d = 64 \)

- Alternating Projections
- BlockPR
- PhaseLift

Reconstruction at 20dB SNR

Reconstruction at 40dB SNR
In Summary...

- BlockPR allows for essentially linear-time robust phase retrieval from local correlation measurement constructions.

- Deterministic measurements for flat vectors.

- **Global** robust recovery guarantee for phase retrieval from local correlation (ptychographic) measurements.

- Improved robustness from **eigenvector**-based angular synchronization.

Current and Future Directions

- (Sublinear-time) compressive phase retrieval
- Extensions to 2D and Ptychographic data sets
- Continuous/infinite dimensional formulation (coming SAMPTA 2017...?)
This Talk

Related Work

Code:
https://bitbucket.org/charms/blockpr (this talk)
https://bitbucket.org/charms/sparsepr (sparse phase retrieval)
Questions?