
Motivation – MR Imaging
Fourier Expansions

Fourier Methods for Irregularly Sampled Data

Fourier Reconstruction

Aditya Viswanathan
Department of Electrical Engineering

Arizona State University
aditya.v@asu.edu

With Profs. Anne Gelb, Douglas Cochran and Rosemary Renaut

August 3, 2009

Aditya Viswanathan Fourier Reconstruction



Motivation – MR Imaging
Fourier Expansions

Fourier Methods for Irregularly Sampled Data

Motivation – MR Imaging

Fourier Expansions
Basis Expansions
Gibbs Phenomenon

Manifestation
Resolution

Fourier Methods for Irregularly Sampled Data
The Problem with non-harmonic Fourier Data
Reconstruction Methods

Aditya Viswanathan Fourier Reconstruction



Motivation – MR Imaging
Fourier Expansions

Fourier Methods for Irregularly Sampled Data

MR Imaging

I NMR observed in atoms with odd number of protons or neutrons

I In the presence of an external magnetic field, their angular momenta
(“spins”) align to yield a net magnetic moment in the direction of the field

I They also rotate or precess at a frequency known as the Larmor frequency

I Now, the spins are excited by a secondary, momentary RF pulse

I The signal generated as the spins return to the equilibrium state is
recorded

I The signal is proportional to concentration of the atoms in the imaged
sample
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MR Imaging – Localization

I Localization is achieved by only exciting those volumes at a particular
Larmor frequency

I We vary the Larmor frequency across a specimen by applying field
gradients known as frequency and phase encoding gradients

At a particular slice, say z = z0, the acquired MR signal can be written as

S(kx, ky) =

Z Z
ρ(x, y) e−i(kx x+ky y) dx dy

where, ρ(x, y) is a measure of the concentration of spins, and kx, ky take the
form

kx =
γ

2π

Z t

0

Gx(τ)dτ, ky =
γ

2π

Z t

0

Gy(τ)dτ

Here, Gx and Gy are the applied gradient fields and γ is a constant known as
the Gyromagnetic ratio, which is unique to each atom. Further, it is convention
to denote the signal acquisition space k = (kx, ky) as “k-space”.
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Figure: k-space acquisition
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Issues in MR Scanning

I kx =
γ

2π

Z t

0

Gx(τ)dτ =⇒ each measurement in k-space is acquired at a

slightly different time
I If the patient moves in the course of the scan, reconstruction results can

be poor
I We reconstruct piecewise-smooth images; eg., the human brain has the

skull, tissue boundaries etc. Fourier reconstruction of piecewise-smooth
functions suffers from the Gibbs phenomenon

I Non-Cartesian scanning trajectories are becoming increasingly popular –
reconstruction is not straightforward
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Figure: Non-Cartesian k-space acquisition (Data from Dr. Jim Pipe, Barrow
Neurological Institute, Phoenix, AZ)
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Basis Expansions
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Figure: Function f

Analysis: ci = 〈f, φi〉 =

Z 2

0

f(x)φi(x)dx

Synthesis: f =
X
i

ciφi(x)
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Figure: Basis functions φi
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The Gibbs Phenomenon

I Occurs in the Fourier reconstruction of piecewise-analytic functions

I result of reconstructing piecewise-analytic functions using smooth basis
functions

I Two important consequences
I Non-unifrom convergence – presence of non-physical oscillations in the

vicinity of discontinuities
I Reduced order of convergence – first order convergence even in smooth

regions of the reconstruction

I Why is this important? smearing of sharp edges and oscillations in
reconstruction cause problems in post-processing tasks like segmentation,
edge detection etc.

I The reduced order of convergence means we need a lot of Fourier
coefficients to get a good reconstruction
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Example

SNf(x) =

NX
k=−N

f̂(k)eikx, f̂(k) =
1

2π

Z π

−π
f(x)e−ikxdx
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Figure: Gibbs Phenomenon, N = 32
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Example
The Gibbs phenomenon does not go away by increasing the number of data
points
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Figure: Reconstruction error for different N
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Filtered Fourier Reconstructions
Filtering helps to ameliorate the effects of Gibbs, but does not eliminate it. In
fact, it introduces a smearing artifact in the vicinity of a discontinuity.
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Figure: Exponentially Filtered Reconstruction, p = 2, N = 64
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Filtered Fourier Reconstructions
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Figure: Exponentially Filtered Reconstructions, N = 64
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Filtered Fourier Reconstructions
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Figure: Exponentially Filtered Reconstructions, p = 4

Aditya Viswanathan Fourier Reconstruction



Motivation – MR Imaging
Fourier Expansions

Fourier Methods for Irregularly Sampled Data

Basis Expansions
Gibbs Phenomenon

Spectral Reprojection

I Spectral reprojection schemes were formulated to resolve the Gibbs
phenomenon. They involve reconstructing the function using an alternate
basis, Ψ (known as a Gibbs complementary basis).

I Reconstruction is performed using the rapidly converging series

f(x) ≈
mX
l=0

clψl(x), where cl =
〈fN , ψl〉w
‖ψl‖2w

, fN is the Fourier expansion of f

I Reconstruction is performed in each smooth interval. Hence, we require
jump discontinuity locations

I High frequency modes of f have exponentially small contributions on the
low modes in the new basis

Aditya Viswanathan Fourier Reconstruction



Motivation – MR Imaging
Fourier Expansions

Fourier Methods for Irregularly Sampled Data

Basis Expansions
Gibbs Phenomenon

Spectral Reprojection
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Figure: Spectral Reprojection Reconstructions
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Non-harmonic Fourier Data

I Periodic functions have a pure point spectra – F{f} = f̂(k), k ∈ Z
I Compactly supported functions have a Fourier trasform

F{f} = f̂(ω) =
1

2π

Z π

−π
f(x)e−iωxdx, ω ∈ R

I They can, however, be reconstructed from uniform samples of the Fourier
transform taken at a sufficiently regular intervals

I We refer to the coefficients acquired at non-uniform intervals (non-integer
nodes for a 2π-periodic function) as non-harmonic Fourier coefficients

I For many non-uniform sample locations, there are results to show that

{eiωkx
oN
k=−N

does not form a basis

=⇒ we may not have sufficient or acceptable data to form a
reconstruction
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Non-harmonic Fourier Series

Let ωk be non-equispaced data points with

F {f}|ωk
= f̂(ωk) =

1

2π

Z a

−a
f(x)e−iωkxdx, ω not necessarily ∈ Z

The “non-equispaced sum” yields,

f̃(x) =

N−1X
k=0

f̂(ωk)eiωkx

=

N−1X
k=0

„Z ∞
−∞

f(u)e−iωkudu

«
eiωkx

=

Z ∞
−∞

f(u)

 
N−1X
k=0

eiωk(x−u)

!
du

f̃(x) = (f ∗AN )(x)
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Non-harmonic Fourier Series
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Figure: The non-harmonic Fourier kernel
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Function Reconstructions
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Figure: Reconstructions using the non-harmonic Fourier sum, N = 128

Aditya Viswanathan Fourier Reconstruction



Motivation – MR Imaging
Fourier Expansions

Fourier Methods for Irregularly Sampled Data

The Problem with non-harmonic Fourier Data
Reconstruction Methods

A Reconstruction Method for Non-uniform Fourier Data

I Recover equispaced coefficients from the non-uniform measurements using
interpolation or by solving a system of equations

I Reconstruct using standard Fourier/filtered Fourier methods
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Figure: URS Solution, N = 128
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Gegenbauer Reconstruction - Representative Results
Compute a Gegenbauer reconstruction using the accurately recovered
equispaced Fourier coefficients
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Figure: Gegenbauer reconstruction

I Filtered Fourier reconstruction uses 256 coefficients

I Gegenbauer reconstruction uses 64 coefficients

I Parameters in Gegenbauer Reconstruction - m = 2, λ = 2
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Methods Incorporating Edge Information

Let us assume that we have access to jump information – jump location and
value
Compute the high frequency modes using the relation

f̂(k) =
X
p∈P

[f ](ζp)
e−ikζp

2πik
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(a) Reconstruction - Using edge in-
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Figure: Reconstruction of a test function using edge information
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Summary

I We looked at Fourier reconstruction with MR imaging serving as a
motivating application

I We discussed the Gibbs phenomenon and its mitigation

I We introduced spectral reprojection – a method to resolve the Gibbs
phenomenon

I We discussed the reconstruction of functions from non-harmonic spectral
data
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