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Figure: A motivating example

Fourier samples violate the quadrature rule for discrete Fourier expansion

Computational issue – no FFT available

Mathematical issue – given these coefficients, can we/how do we
reconstruct the function?

Resolution – what accuracy can we achieve given a finite (usually small)
number of coefficients?
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Application – Magnetic Resonance Imaging

Non-Cartesian sampling trajectories
have some advantages

greater resistance to motion
artifacts

instrumentation concerns – ease
in generating gradient
waveforms
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(b) Sampling Trajectory

Reconstructed phantom

(c) Reconstructed Image

Figure: MR Imaginga

aSampling pattern courtesy Dr. Jim Pipe, Barrow Neurological Institute,
Phoenix, Arizona
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In this Talk

We will discuss

Issues with non-harmonic Fourier reconstruction

Conventional reconstruction methods

Accuracy vs Sampling Density

Spectral Re-projection methods

Incorporating edge information in the reconstruction
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Problem Formulation

Let f be defined on R and supported in (−π, π)

It has a Fourier transform representation, f̂(ω), defined as

f̂(ω) =
1

2π

Z π

−π
f(x)e−iωxdx, ω ∈ R

Objective

Recover f given a finite number of its non-harmonic Fourier coefficients,

f̂(ωk), k = −N, ..., N ωk not necessarily ∈ Z

We will refer to {ωk}N−N as the
sampling pattern/trajectory

We will be particularly
interested in sampling patterns
with variable sampling density

We will pay special attention to
piecewise-smooth f

Aditya Viswanathan Fourier Reconstruction from Non-Uniform Spectral Data
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Sampling Patterns

Jittered Sampling: ωk = k ± τk, τk ∼ U [0, θ], k = −N,−(N − 1), ..., N

Log Sampling: |ωk| is logarithmically distributed between 10−v and N ,
with v > 0 and 2N + 1 being the total number of samples.
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Figure: Non-uniform Sampling Schemes (right half plane), N = 16
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The Non-harmonic Reconstruction Kernel

Consider standard (harmonic) Fourier reconstruction.

The Fourier partial sum SNf(x) =
X
|k|≤N

f̂(k)eikx can be

written as SNf(x) = (f ∗DN )(x) where

DN (x) =
X
|k|≤N

eikx is the Dirichlet kernel.

Now consider non-harmonic Fourier reconstruction using

the sum SN f̃(x) =
X
|k|≤N

f̂(ωk)eiωkx. We may again

write SN f̃(x) = (f ∗AN )(x) where AN (x) =
X
|k|≤N

eiωkx

is the non-harmonic kernel.

The non-harmonic kernels do not constitute a basis for
span {eikx, |k| ≤ N}
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Non-harmonic Kernels
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Reconstruction Examples
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Conventional Reconstruction Methods

Several approaches available to perform reconstruction

Convolutional gridding – most popular

Uniform resampling

Iterative Methods

– “Fix” the quadrature rule while evaluating
the non-harmonic sum

SN f̃(x) =
NX

k=−N

αkf̂(ωk)eiωkx

– αk are density compensation factors
e.g., αk = ωk+1 − ωk

– Evaluated using a “non-uniform” FFT
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Figure: Evaluating the non-uniform
Fourier sum

Although there are distinct difference in methodology and computational cost,
reconstruction accuracy is similar in most schemes. We will look at
convolutional gridding to obtain an intuitive understanding of the problems in
reconstruction
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Figure: Uniform Resampling

Although there are distinct difference in methodology and computational cost,
reconstruction accuracy is similar in most schemes. We will look at
convolutional gridding to obtain an intuitive understanding of the problems in
reconstruction
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Conventional Reconstruction Methods
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Figure: Iterative Reconstruction

Although there are distinct difference in methodology and computational cost,
reconstruction accuracy is similar in most schemes. We will look at
convolutional gridding to obtain an intuitive understanding of the problems in
reconstruction
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Although there are distinct difference in methodology and computational cost,
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convolutional gridding to obtain an intuitive understanding of the problems in
reconstruction

Aditya Viswanathan Fourier Reconstruction from Non-Uniform Spectral Data



Introduction Non-uniform Data Current Methods Alternate Approaches Reconstruction Methods Error Characteristics

Convolutional Gridding

To evaluate SN f̃(x) =
NX

k=−N

αkf̂(ωk)eiωkx efficiently

1 Map the non-uniform modes to a uniform grid. A
convolution operation is typically used.

2 Compute a Fourier or filtered Fourier partial sum.

3 If required, compensate for the mapping operation. −30 −25 −20 −15 −10 −5 0 5 10
0

0.05

0.1

ω

(f
∗φ

)(
ω

)| ω
=
−10

Gridding

f^(ω)

φ^(k−ω)

Figure: Gridding

The new coefficients on the uniform grid are therefore given by

f̂ ∗ φ̂
˛̨̨
ω=k
≈

X
m st. |k−ωm|≤q

αmf̂(ωm)φ̂(k − ωm)

Choose the interpolating function φ to be essentially bandlimited, i.e.,

φ̂(ω) ≈ 0 |ω| > q, q ∈ R, small
φ(x) ≈ 0 |x| > π
φ(x) 6= 0 x ∈ [−π, π]
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Reconstruction Examples
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(b) Cross-section of a brain scan

Figure: Gridding reconstruction, N = 128 (processed by a 4th-order exponential filter)
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Gridding Error

Theorem (Convolutional Gridding Error)

Let ĝ = f̂ ∗ φ̂ denote the true gridding coefficients and ˆ̃g denote the
approximate gridding coefficients. Let ∆k be the maximum distance between
sampling points and dk := 1

∆k
be the minimum sample density in the q-vicinity

of k. Then, the gridding error at mode k is bounded by
e(k) ≤ C · 1

d3
k
, k = −N, ..., N for some positive constant C.

Proof.

ĝ(k)− ˆ̃g(k) =

Z ∞
−∞

f̂(ω)φ̂(k − ω)dω −
X

p st. |k−ωp|≤q

αpf̂(ωp)φ̂(k − ωp)

Error in approximating the integral in the interval (ωp, ωp+1) is

ep =

Z ωp+1

ωp

f̂(ω)φ̂(k − ω)dω−

|ωp+1 − ωp|
2

“
f̂(ωp)φ̂(k − ωp) + f̂(ωp+1)φ̂(k − ωp+1)

”
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Let ĝ = f̂ ∗ φ̂ denote the true gridding coefficients and ˆ̃g denote the
approximate gridding coefficients. Let ∆k be the maximum distance between
sampling points and dk := 1

∆k
be the minimum sample density in the q-vicinity

of k. Then, the gridding error at mode k is bounded by
e(k) ≤ C · 1

d3
k
, k = −N, ..., N for some positive constant C.

Proof.
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Gridding Error

Proof.

From trapezoidal quadrature rule error analysis

ep ≤
|ωp+1 − ωp|3 vp

12

The total error is the error is then given by

ĝ(k)− ˆ̃g(k) ≤
X
p

ep .
X

p st. |k−ωp|≤q

ep

˛̨̨
ĝ(k)− ˆ̃g(k)

˛̨̨
≤

X
p st. |k−ωp|≤q

|ωp+1 − ωp|3 |vp|
12

≤ κ
X

p st. |k−ωp|≤q

|ωp+1 − ωp|3 , κ = max
p

|vp|
12

≤ C ·∆3
k, for some positive constant C

= C · 1
d3

k
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Gridding Error
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Gridding Error

Physical space reconstruction error

e(x) ≈ g(x)− SN g̃(x) = g(x)− SNg(x) + SNg(x)− SN g̃(x)

=
X
|k|>N

ĝ(k)eikx

| {z }
standard Fourier truncation

+
X
|k|≤N

“
ĝ(k)− ˆ̃g(k)

”
eikx

| {z }
gridding

SNg suffers from Gibbs; the maximum error occurs in the vicinity of a
jump (≈ 1.09 of the jump value). There is also a reduced order of

convergence with ‖g − SNg‖2 = O
“
N−1/2

”
.

Gridding Error

|SNg(x)− SN g̃(x)| =

˛̨̨̨
˛̨ X
|k|≤N

“
ĝ(k)− ˆ̃g(k)

”
eikx

˛̨̨̨
˛̨

≤
X
|k|≤N

˛̨̨
ĝ(k)− ˆ̃g(k)

˛̨̨
≤ C

X
|k|≤N

1

d3
k

.
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Error Plots

−150 −100 −50 0 50 100 150
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

k

lo
g 10

 |e
|

 

 

Error
Normalized bound

(a) Error bound, log sampling

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
H

(ω
k,N

)

(b) |SNg(x)− SN g̃(x)| vs N

Figure: Error Plots
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Error Plots
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Error vs Sampling Density

The reconstruction error is

e(x) ≈
X
|k|>N

ĝ(k)eikx +
X
|k|≤N

“
ĝ(k)− ˆ̃g(k)

”
eikx

1st term decreases as N increases

2nd term increases as N increases
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Figure: Error in uniform re-sampling

For a given sampling trajectory and function, there is a critical value Ncrit
beyond which adding coefficients does not improve the accuracy.
While filtering decreases the error, the underlying problem is not solved.
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Error vs Sampling Density
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For a given sampling trajectory and function, there is a critical value Ncrit
beyond which adding coefficients does not improve the accuracy.
While filtering decreases the error, the underlying problem is not solved.
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Error vs Sampling Density
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Figure: Error in uniform re-sampling

For a given sampling trajectory and function, there is a critical value Ncrit
beyond which adding coefficients does not improve the accuracy.
While filtering decreases the error, the underlying problem is not solved.
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Piecewise-Smooth Functions

(a) Brain scan
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(b) Cross-section of a scan

Figure: Piecewise-smooth nature of medical images

Due to the Gibbs phenomenon, we have non-physical oscillations at
discontinuities, and, more importantly, reduced order of convergence (first
order). Hence, we require a large number of coefficients to get acceptable
reconstructions.

However, by formulation of the sampling scheme and recovery procedure,
the coefficients recovered at large ω are inaccurate.

=⇒ we need more coefficients, but the coefficients we get are inaccurate!
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Spectral Re-projection

Spectral reprojection schemes were formulated to resolve the Gibbs
phenomenon. They involve reconstructing the function using an alternate
basis, Ψ (known as a Gibbs complementary basis).

Reconstruction is performed using the rapidly converging series

f(x) ≈
mX
l=0

clψl(x), where cl =
〈fN , ψl〉w
‖ψl‖2w

, fN is the Fourier expansion of f

Reconstruction is performed in each smooth interval. Hence, we require
jump discontinuity locations

High frequency modes of f have exponentially small contributions on the
low modes in the new basis
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Reducing the Impact of the High Mode Coefficients

Filtered Fourier reconstructions

SN g̃(x) =

NX
k=−N

σ

„
|k|
N

«
ĝ(k)eikx

Spectral re-projection
Expansion coefficients are obtained using

1

hλl

Z 1

−1

(1− η2)λ−1/2Cλl (η)
X
|k|≤N

ˆ̃g(k)eiπkηdη

Damping of the high modes since
1

hλl

Z 1

−1

(1− η2)λ−1/2Cλl (η)eiπkηdη =

Γ(λ)

„
2

πk

«λ
il(l + λ)Jl+λ(πk)

The gridding error can be shown to be

C′ · ρ(m,λ) ·
X

0<|k|≤N

1

d3
k

„
1

|k|

«λ
| {z }

H(ωk,N,λ)
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Reducing the Impact of the High Mode Coefficients
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Gegenbauer Reconstruction - Results
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(f) Reconstruction error

Figure: Gegenbauer reconstruction

Filtered Fourier reconstruction uses 256 coefficients

Gegenbauer reconstruction uses 64 coefficients

Parameters in Gegenbauer Reconstruction - m = 2, λ = 2
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Error Plots
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Figure: Error Plots – Filtered and Gegenbauer Reconstruction
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Incorporating Edge Information

Solve the following equation

f̂(k) =
X
p∈P

[f ](ζp)
e−ikζp

2πik

Use the concentration method on the
recovered coefficients

SσN [f ](x) = i

NX
k=−N

f̂(k) sgn(k)σ

„
|k|
N

«
eikx

Solve for the jump function directly
from the non-harmonic Fourier data

min ‖ [f ] ‖1

s.t. F{[f ]}|ωk
= i sgn(ω)σ

“
|ω|
N

”
f̂
˛̨̨
ωk
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Figure: Edge Detection
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Methods Incorporating Edge Information

Compute the high frequency modes using the relation Compare

f̂(k) =
X
p∈P

[f ](ζp)
e−ikζp

2πik
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Figure: Reconstruction of a test function using edge information
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Summary

We introduced the Fourier reconstruction problem for non-uniform spectral
data

We discussed the inherent problems associated with non-uniform Fourier
data

We briefly looked at conventional reconstruction methods

We studied the error characteristics and relation to sampling density

We looked at spectral re-projection and methods incorporating edge
information to obtain better reconstructions

Current Emphasis

Incorporating edge detection into the reconstruction scheme
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