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Introduction Motivating Example

Motivating Example
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Figure: A motivating example

Fourier samples violate the quadrature rule for discrete Fourier expansions.

Computational issue – no FFT available

How does variable sampling density affect reconstruction accuracy?
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Introduction Application

Application – Magnetic Resonance Imaging

Non-Cartesian sampling trajectories
have some advantages

greater resistance to aliasing
and motion artifacts

instrumentation concerns – ease
in generating gradient
waveforms
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(b) Sampling Trajectory

Reconstructed phantom

(c) Reconstructed Image

Figure: MR Imaginga

aSampling pattern courtesy Dr. Jim Pipe, Barrow Neurological
Institute, Phoenix, Arizona
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Introduction Outline of the Talk

In this Talk

We will discuss

Issues with non-harmonic Fourier reconstruction

Convolutional gridding

Accuracy vs Sampling Density

Spectral Re-projection methods

Viswanathan, Gelb, Cochran, Renaut (ASU) Reconstruction from Non-Uniform Spectral Data 13 April 2010 3 / 14



Non-harmonic Reconstructions

Outline

1 Introduction
Motivating Example
Application
Outline of the Talk

2 Non-harmonic Reconstructions
The Non-harmonic Kernel
Reconstruction Examples

3 Reconstruction using Convolutional Gridding
The Gridding Procedure
Reconstruction Examples
Gridding Error

4 Spectral Re-projection
Principle
Reconstruction Results

Viswanathan, Gelb, Cochran, Renaut (ASU) Reconstruction from Non-Uniform Spectral Data 13 April 2010 3 / 14



Non-harmonic Reconstructions The Non-harmonic Kernel

The Non-harmonic Reconstruction Kernel

Consider reconstruction using the sum

SN f̃(x) =
∑
|k|≤N

f̂(ωk)eiωkx

We may write

SN f̃(x) = (f ∗AN )(x), AN (x) =
∑
|k|≤N

eiωkx

where AN (x) is the non-harmonic kernel.
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Figure: AN (x), N = 64
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Non-harmonic Reconstructions Reconstruction Examples

Reconstruction Examples
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Figure: Non-harmonic Fourier sum Reconstruction,N = 128
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Convolutional Gridding The Gridding Procedure

Convolutional Gridding

Procedure:

1 Map the non-uniform modes to a uniform grid. A
convolution operation is typically used.

2 Compute a Fourier or filtered Fourier partial sum.

3 If required, compensate for the mapping operation.
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Figure: Gridding

The new coefficients on the uniform grid are therefore given by

f̂ ∗ φ̂
∣∣∣
ω=k
≈

∑
m st. |k−ωm|≤q

αmf̂(ωm)φ̂(k − ωm)
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Convolutional Gridding Reconstruction Examples

Reconstruction Examples
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(b) Cross-section of a brain scan

Figure: Gridding reconstruction, N = 128 (processed by a 4th-order exponential filter)
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Convolutional Gridding Gridding Error

Gridding Error

Define the q-vicinity of k (k ∈ Z) to be the set {P = ω : |k − ω| ≤ q, ω, q ∈ R, q > 0}.

Theorem (Convolutional Gridding Error)

Let ĝ = f̂ ∗ φ̂ denote the true gridding coefficients and ˆ̃g denote the approximate gridding
coefficients. Let ∆k be the maximum distance between sampling points and dk := 1

∆k
be

the minimum sample density in the q-vicinity of k. Then, the gridding error at mode k is
bounded by |e(k)| = |ĝ(k)− ˆ̃g(k)| =≤ C 1

d2
k
, k = −N, ..., N for some positive constant C.
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Figure: Error Plots
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Convolutional Gridding Gridding Error

Error vs Sampling Density

The reconstruction error is

e(x) ≈
∑
|k|>N

ĝ(k)eikx +
∑
|k|≤N

(
ĝ(k)− ˆ̃g(k)

)
eikx

1st term decreases as N increases (standard Fourier truncation)

2nd term increases as N increases (gridding error)

Gridding error |SNg(x)− SN g̃(x)| can be shown to be bounded by C
∑
|k|≤N

1
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k
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Figure: Error in uniform re-sampling

While filtering decreases the error, the underlying problem is not solved.
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ĝ(k)eikx +
∑
|k|≤N

(
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Spectral Re-projection Principle

Spectral Re-projection

Spectral reprojection schemes were formulated to resolve the Gibbs phenomenon.
They involve reconstructing the function using an alternate basis, Ψ (known as a
Gibbs complementary basis).

Reconstruction is performed using the rapidly converging series

f(x) ≈
m∑
l=0

clψl(x), where cl =
〈fN , ψl〉w
‖ψl‖2w

, fN is the Fourier expansion of f

Reconstruction is performed in each smooth interval. Hence, we require jump
discontinuity locations

High frequency modes of f have exponentially small contributions on the low modes
in the new basis
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Spectral Re-projection Principle

Reducing the Impact of the High Mode Coefficients

Using Gegenbauer polynomials, the re-projected expansion coefficients can be
written as

1

hλl

∫ 1

−1

(1− η2)λ−1/2Cλl (η)
∑
|k|≤N

ˆ̃g(k)eiπkηdη

Damping of the high modes since

1

hλl

∫ 1

−1

(1− η2)λ−1/2Cλl (η)eiπkηdη = Γ(λ)

(
2

πk

)λ
il(l + λ)Jl+λ(πk)

The gridding error can be shown to be

C′ · ρ(m,λ) ·
∑

0<|k|≤N

1

d2
k

(
1

|k|

)λ
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Spectral Re-projection Reconstruction Results

Gegenbauer Reconstruction - Results
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Figure: Gegenbauer reconstruction

Filtered Fourier reconstruction uses 256 coefficients

Gegenbauer reconstruction uses 64 coefficients

Parameters in Gegenbauer Reconstruction - m = 2, λ = 2
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Spectral Re-projection Reconstruction Results

Gegenbauer Reconstruction - Results

20 30 40 50 60 70 80 90 100 110 120
0

1

2

3

4

5

6

N

|| 
f −

 P
m

S
N

f |
| 2

 

 
Gegenbauer

2nd−order exponential

4th−order exponential

8th−order exponential

(a) 2-norm error

20 30 40 50 60 70 80 90 100 110 120
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N

||f
−P

m
S
N
f
|| ∞

 

 

Gegenbauer

2nd−order exponential

4th−order exponential

8th−order exponential

(b) Maximum-norm error

Figure: Error Plots – Filtered and Gegenbauer Reconstruction

Filtered Fourier reconstruction uses 256 coefficients

Gegenbauer reconstruction uses 64 coefficients

Parameters in Gegenbauer Reconstruction - m = 2, λ = 2
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Summary

Summary

Fourier reconstruction from non-uniform spectral data is important in applications
such as MR imaging.

Families of non-harmonic exponentials do not usually constitute a basis for functions
in L2(−π, π).

The most popular reconstruction method is convolutional gridding, post-processed
by low-pass filtering.

Variable sampling density can result in poor reconstruction accuracy.

Spectral re-projection methods can be useful in obtaining highly accurate
reconstructions.

Current Emphasis

Incorporating edge information into the reconstruction scheme .
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Summary
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