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The Phase Retrieval Problem

find x ∈ Cd given |Mx| = b ∈ RD,

where

• b ∈ RD are the magnitude or intensity measurements.

• M ∈ CD×d is a measurement matrix associated with these
measurements.

Let A : RD → Cd denote the recovery method.

The phase retrieval problem involves designing measurement
matrix and recovery method pairs.
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Applications of Phase Retrieval

Important applications of Phase Retrieval

• X-ray crystallography

• Diffraction imaging

• Transmission Electron Microscopy (TEM)

In many molecular imaging applications, the detectors only capture
intensity measurements.

Indeed, the design of such detectors is often significantly simpler
than those that capture phase information.
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The Importance of Phase – An Illustration

• The phase encapsulates vital information about a signal

• Key features of the signal are retained even if the magnitude
is lost
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The Importance of Phase – An Illustration
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The Importance of Phase – An Illustration
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Objectives

• Computational Efficiency – Can the recovery algorithm A be
computed in O(d)-time?

• Computational Robustness: The recovery algorithm, A,
should be robust to additive measurement errors (i.e., noise).

• Minimal Measurements: The number of linear measurements,
D, should be minimized to the greatest extent possible.
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Alternating Projection Methods
[Gerchberg and Saxton, 1972] and [Fienup, 1978]

• These methods operate by alternately projecting the current
iterate of the signal estimate over two sets of constraints.

• One of the constraints is the magnitude of the measurements.

• The other constraint depends on the application – positivity,
support constraints, . . .
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Alternating Projection Methods
[Gerchberg and Saxton, 1972] and [Fienup, 1978]

Issues

• Convergence is slow – the algorithm is likely to stagnate at
stationary points

• Requires careful selection of and tuning of the parameters

• Mathematical aspects of the algorithm not well known. If
there is proof of convergence, it is only for special cases.

Applications

• Can be used as a post-processing step to speed up more
rigorous (but slow) computational approaches
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PhaseLift [Candes et. al., 2012]

• Modify the problem to that of finding the rank-1 matrix
X = xx∗

• Uses multiple random illuminations (or masks) as
measurements.

• The resulting problem can be cast as a rank minimization
optimization problem (NP hard)

• Instead, solve a convex relaxation – trace minimization
problem (SDP)
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PhaseLift [Candes et. al., 2012]

Advantages

• Recovery guarantees for random measurements

• Optimization problems of the above type are well-understood

• Mature software for solving the resulting optimization
problem.

Disadvantages

• SDP solvers are still slow!

• General-purpose solvers have complexity O
(
d3
)
; FFT-based

measurements may be solved in O
(
d2
)

time
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Overview of the Computational Framework

1 Use compactly supported masks and correlation
measurements to obtain phase difference estimates.

|corr(w,x)| −→ xjxj+k, k = 0, . . . , δ

• w is a mask or window function with δ + 1 non-zero entries.
• xjxj+k gives us the (scaled) difference in phase between

entries xj and xj+k.

2 Solve an angular synchronization problem on the phase
differences to obtain the unknown signal.

xjxj+k −→ xj

Constraints on x: We require x to be non-sparse.
(The number of consecutive zeros in x should be less than δ)

7 / 22



Overview of the Computational Framework

1 Use compactly supported masks and correlation
measurements to obtain phase difference estimates.

|corr(w,x)| −→ xjxj+k, k = 0, . . . , δ

• w is a mask or window function with δ + 1 non-zero entries.
• xjxj+k gives us the (scaled) difference in phase between

entries xj and xj+k.

2 Solve an angular synchronization problem on the phase
differences to obtain the unknown signal.

xjxj+k −→ xj

Constraints on x: We require x to be non-sparse.
(The number of consecutive zeros in x should be less than δ)

7 / 22



Correlations with Support-Limited Functions

• Let x = [x0 x1 . . . xd−1]
T ∈ Cd be the unknown signal.

• Let w = [w0 w1 . . . wδ 0 . . . 0]T denote a support-limited
mask. It has δ + 1 non-zero entries.

• We are given the (squared) correlation measurements

(bm)2 = |corr(wm,x)|2 , m = 0, . . . , L

corresponding to L+ 1 distinct masks.
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Correlations with Support-Limited Functions

Explicitly writing out the correlation, we have

(bmk )
2 =

∣∣∣∣∣∣
δ∑
j=0

wmj · xk+j

∣∣∣∣∣∣
2

=

δ∑
i,j=0

wmi w
m
j xk+jxk+i

=:

δ∑
i,j=0

wiwjZk+j,i−j ,

where Zn,l := xnxn+l, −δ ≤ l ≤ δ.
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Solving for Phase Differences

Ordering {Zn,l} lexicographically, second index first, we obtain a
linear system of equations for the phase differences.

Example: x ∈ Rd, d = 4, δ = 1
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The system matrix is block circulant!
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Consequences of the Block Circulant Structure

• There exists a unitary decomposition of the system matrix

• The condition number of the system matrix is a function of
the individual blocks. In particular, we have

κ =

max
|t|=1

σ1(t)

min
|t|=1

σδ(t)
,

where σ1(t), σδ(t) are the largest/smallest singular values of

J(t) = A0 + tA1 + · · ·+ tδ−1Aδ

• The linear system for the phase differences can be solved
efficiently using FFTs
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Entries of the Measurement Matrix

Two strategies

• Random entries (Gaussian, Uniform, Bernoulli, . . . )

• Structured measurements
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Random Measurements

Representative Condition Numbers

δ = 3 δ = 6 δ = 9

Critical sampling 34.89 124.05 465.32

Oversampling factor 2 3.73 11.73 13.30

Oversampling factor 3 3.29 6.08 8.60

• Critical sampling: D = (2δ + 1)d, where D denotes the
number of measurements.

• Oversampling: D = γ · (2δ + 1)d, where γ is the oversampling
factor

• Typically, we use γ = 1.5.
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Structured Measurements

Theorem

Choose entries of the measurement matrix, S, as follows:

w`i =

{
e
−i/a

4√2δ+1
· e

2πi·i·`
2δ+1 , i ≤ δ

0, i > δ
a ∈

[
4,
δ − 1

2

)
, 0 ≤ ` ≤ L.

Then,

κ(S) < max

{
144e2,

9e2

4
· (δ − 1)2

}
.

Note:

• w`i are scaled entries of a DFT matrix.

• δ is typically chosen to be 6–12.

• No oversampling necessary!
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Angular Synchronization

The Angular Synchronization Problem
Estimate n unknown angles θ1, θ2, . . . , θn ∈ [0, 2π) from m noisy
measurements of their differences θij := θi − θj mod 2π.

• Applications include time synchronization in distributed
computer networks and computer vision.

• Problem formulation similar to that of partitioning a weighted
graph.

• Problem can be cast as a semidefinite program (SDP) or an
Eigenvector problem
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A Greedy Algorithm for Angular Synchronization

The unknown phases (modulo a global phase offset) may be
obtained by solving a simple greedy algorithm.

1 Set the largest magnitude component to have zero phase
angle; i.e.,

∠xj = 0, j = argmax
i
Zi,i.

Note: (by definition) |xj |2 = Zi,i, i = 0, . . . , d− 1.

2 Use this entry to set the phase angles of the next δ entries;
i.e.,

∠xk = ∠xj − ∠Zj,k, k = 1, . . . , δ.

3 Use the largest magnitude component from these δ entries to
repeat the process.
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Numerical Results

• Test signals (Real and Complex) – iid Gaussian, uniform
random, sinusoidal signals

• Noise model
b̃ = b+ ñ, ñ ∼ U [0, a].

Value of a determines SNR

SNR = 10 log10

(
noise power

signal power

)
= 10 log10

(
a2/3

||b||2/d

)
• Errors reported as SNR (dB)

Error (dB) = 10 log10

(
‖x̂− x‖2

‖x‖2

)
(x̂ – recovered signal, x – true signal)
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Noiseless Case

• iid Complex Gaussian
signal

• d = 64

• δ = 1
(3d measurements)

• No noise

• Reconstruction Error

‖x̂− x‖2

‖x‖2
= 6.436×10−15
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Efficiency

• iid Complex Gaussian
signal

• δ = 8
(17d measurements)

• SDP solver – 4d
measurements

• 40 dB noise
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Robustness

• iid complex Gaussian
signal

• d = 64

• δ = 4 (i.e., 9d
measurements)

• SDP solver – 4d
measurrements
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Discussion

(+)

• Well-conditioned measurement matrices with explicit
condition number bounds

• Significantly faster (FFT time) than comparable SDP-based
methods

(-)

• Requires 2× to 4× more measurements than equivalent
SDP-based methods
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Future Research Directions

• Writing out a formal recovery guarantee

• Efficient implementations for two dimensional signals.

• Extension to sparse signals – number of required
measurements can be reduced.
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