Phase Retrieval from Local Measurements: Deterministic Measurement Constructions and Efficient Recovery Algorithms

Aditya Viswanathan
Department of Mathematics and Statistics
adityavv@umich.edu
www-personal.umich.edu/~adityavv

2018 International Conference on Computational and Harmonic Analysis Vanderbilt University, Nashville, TN May 15, 2018

Collaborators

Mark Iwen

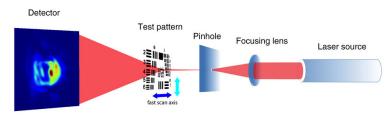
Rayan Saab

Brian Preskitt

Yang Wang

Research supported in part by NSF grant DMS-1416752

Motivating Application



From Huang, Xiaojing, et al. "Fly-scan ptychography." Scientific Reports 5 (2015).

The Phase Retrieval problem arises in many molecular imaging modalities, including

- X-ray crystallography
- Ptychography

Other applications can be found in optics, astronomy and speech processing.

Mathematical Model

find¹
$$\mathbf{x} \in \mathbb{C}^d$$
 given $y_i = |\langle \mathbf{a}_i, \mathbf{x} \rangle|^2 + \eta_i$ $i \in 1, \dots, D$,

where

- $y_i \in \mathbb{R}$ denotes the phaseless (or magnitude-only) measurements (D measurements acquired),
- $\mathbf{a}_i \in \mathbb{C}^d$ are known (by design or estimation) measurement vectors, and
- $\eta_i \in \mathbb{R}$ is measurement noise.

¹(upto a global phase offset)

Existing Computational Approaches

- Alternating projection methods [Fienup, 1978], [Marchesini et al., 2006], [Fannjiang, Liao, 2012] and many others. . .
- Methods based on semidefinite programming
 PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al., 2012], ...
- Others
 - Frame-theoretic, graph based algorithms [Alexeev et al., 2014]
 - (Spectral) initialization + gradient descent (Wirtinger Flow) [Candes et al., 2014]

Most methods (with provable recovery guarantees) require impractical (global, random) measurement constructions.

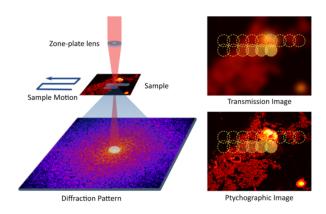
Today...

- We discuss a recently introduced fast (essentially linear-time) phase retrieval algorithm based on realistic (deterministic)² local measurement constructions.
- We provide rigorous theoretical recovery guarantees and present numerical results showing the accuracy, efficiency and robustness of the method.
- (Time Permitting) extensions to 2D and compressive phase retrieval.

²for a large class of real-world signals

Outline

- 1 Introduction
- Solving the Phase Retrieval Problem
 Measurement Constructions
 Structured Lifting Obtaining Phase Difference Information
 Angular Synchronization Solving for the Individual Phases
- 3 Theoretical Guarantees
- 4 Numerical Simulations
- 5 Extensions



From Qian, Jianliang, et al. "Efficient algorithms for ptychographic phase retrieval." Inverse Problems Appl., Contemp. Math 615 (2014).

Each \mathbf{a}_i is a **shift** of a **locally-supported** vector (*mask or window*) $\mathbf{m}^{(j)} \in \mathbb{C}^d$, $\operatorname{supp}(\mathbf{m}^{(j)}) = [\delta] \subset [d], \quad j = 1, \dots, K$

Each \mathbf{a}_i is a **shift** of a **locally-supported** vector (mask or window) $\mathbf{m}^{(j)} \in \mathbb{C}^d$, $\operatorname{supp}(\mathbf{m}^{(j)}) = [\delta] \subset [d], \quad j = 1, \dots, K$

Define the discrete circular shift operator

$$S_{\ell}: \mathbb{C}^d \to \mathbb{C}^d$$
 with $(S_{\ell}\mathbf{x})_j = x_{\ell+j}$.

Our measurements are then

$$(\mathbf{y}_{\ell})_{j} = |\langle \mathbf{x}, S_{\ell}^{*} \mathbf{m}^{(j)} \rangle|^{2} + \eta_{j,\ell}, \quad (j,\ell) \in [K] \times P, \quad P \subset \{0, ..., d-1\}$$

Each a_i is a **shift** of a **locally-supported** vector (mask or window)

$$\mathbf{m}^{(j)} \in \mathbb{C}^d$$
, supp $(\mathbf{m}^{(j)}) = [\delta] \subset [d]$, $j = 1, \dots, K$

Define the discrete circular shift operator

$$S_{\ell}: \mathbb{C}^d \to \mathbb{C}^d$$
 with $(S_{\ell}\mathbf{x})_j = x_{\ell+j}$.

Our measurements are then

$$(\mathbf{y}_{\ell})_{j} = |\langle \mathbf{x}, S_{\ell}^{*} \mathbf{m}^{(j)} \rangle|^{2} + \eta_{j,\ell}, \quad (j,\ell) \in [K] \times P, \quad P \subset \{0, ..., d-1\}$$

Each a_i is a **shift** of a **locally-supported** vector (mask or window)

$$\mathbf{m}^{(j)} \in \mathbb{C}^d$$
, supp $(\mathbf{m}^{(j)}) = [\delta] \subset [d]$, $j = 1, \dots, K$

Define the discrete circular shift operator

$$S_{\ell}: \mathbb{C}^d \to \mathbb{C}^d$$
 with $(S_{\ell}\mathbf{x})_j = x_{\ell+j}$.

Our measurements are then

$$(\mathbf{y}_{\ell})_{j} = |\langle \mathbf{x}, S_{\ell}^{*} \mathbf{m}^{(j)} \rangle|^{2} + \eta_{j,\ell}, \quad (j,\ell) \in [K] \times P, \quad P \subset \{0, ..., d-1\}$$

Each \mathbf{a}_i is a **shift** of a **locally-supported** vector (mask or window)

$$\mathbf{m}^{(j)} \in \mathbb{C}^d$$
, supp $(\mathbf{m}^{(j)}) = [\delta] \subset [d]$, $j = 1, \dots, K$

Define the discrete circular shift operator

$$S_{\ell}: \mathbb{C}^d \to \mathbb{C}^d$$
 with $(S_{\ell}\mathbf{x})_j = x_{\ell+j}$.

Our measurements are then

$$(\mathbf{y}_{\ell})_{j} = |\langle \mathbf{x}, S_{\ell}^{*} \mathbf{m}^{(j)} \rangle|^{2} + \eta_{j,\ell}, \quad (j,\ell) \in [K] \times P, \quad P \subset \{0, ..., d-1\}$$

Lifted System:
$$|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)} S_{\ell} \rangle.$$

Lifted System:
$$|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)}^* S_{\ell} \rangle.$$

Lifted System:
$$|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)} S_{\ell} \rangle.$$

Lifted System:
$$|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)}^* S_{\ell} \rangle.$$

Lifted System:
$$|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)} S_{\ell} \rangle.$$

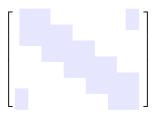
Lifted System:
$$|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)} S_{\ell} \rangle.$$

 $\text{Lifted System:} \qquad |\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)}^* S_{\ell} \rangle.$

Example: $(6 \times 6 \text{ system}, \ \delta = 2, \text{ blue denotes non-zero entries})$

Observation: The only entries of $\mathbf{x}\mathbf{x}^*$ we can hope to recover (via linear

inversion) are supported on a (circulant) band



Useful Observations (I)

$$T_\delta(\mathbb{C}^{d imes d})$$
: Let
$$T_k:\mathbb{C}^{d imes d} o\mathbb{C}^{d imes d}$$

$$T_k(A)_{ij}=\left\{egin{array}{ll} A_{ij},&|i-j|\mod d< k\\ 0,& extbf{otherwise}. \end{array}
ight.$$

Lifted System Revisited:
$$|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle T_{\delta}(\mathbf{x} \mathbf{x}^*), S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)*} S_{\ell} \rangle$$
.

Bottom Line: If we can find $\mathbf{m}^{(j)}$ such that

$$\operatorname{Span}\left\{S_{\ell}^{*}\mathbf{m}^{(j)}\mathbf{m}^{(j)}^{*}S_{\ell}\right\}_{\ell,j}=T_{\delta}(\mathbb{C}^{d\times d}),$$

then we can recover $T_{\delta}(\mathbf{x}\mathbf{x}^*)$

Useful Observations (I)

$$T_\delta(\mathbb{C}^{d imes d})$$
: Let
$$T_k:\mathbb{C}^{d imes d} o\mathbb{C}^{d imes d}$$

$$T_k(A)_{ij}=\left\{egin{array}{ll} A_{ij},&|i-j|\mod d< k\\ 0,& {f otherwise}. \end{array}
ight.$$

Lifted System Revisited: $|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle T_{\delta}(\mathbf{x} \mathbf{x}^*), S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)} S_{\ell}^* \rangle$.

Bottom Line: If we can find $\mathbf{m}^{(j)}$ such that

Span
$$\left\{S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)^*} S_{\ell}\right\}_{\ell,j} = T_{\delta}(\mathbb{C}^{d \times d}),$$

then we can recover $T_{\delta}(\mathbf{x}\mathbf{x}^*)$.

Useful Observations (I)

$$T_\delta(\mathbb{C}^{d imes d})$$
: Let
$$T_k:\mathbb{C}^{d imes d} o\mathbb{C}^{d imes d}$$

$$T_k(A)_{ij}=\left\{egin{array}{ll} A_{ij},&|i-j|\mod d< k\\ 0,& {f otherwise}. \end{array}
ight.$$

Lifted System Revisited: $|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle T_{\delta}(\mathbf{x} \mathbf{x}^*), S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)} S_{\ell}^* \rangle$.

Bottom Line: If we can find $\mathbf{m}^{(j)}$ such that

$$\operatorname{Span}\left\{S_{\ell}^{*}\mathbf{m}^{(j)}\mathbf{m}^{(j)^{*}}S_{\ell}\right\}_{\ell,j}=T_{\delta}(\mathbb{C}^{d\times d}),$$

then we can recover $T_{\delta}(\mathbf{x}\mathbf{x}^*)$.

Useful Observations (II)

Why this is useful:

- (a) Diagonal entries of $T_{\delta}(\mathbf{x}\mathbf{x}^*)$ are $|x_i|^2$.
- (b) Off-diagonals give the relative phases

$$\widetilde{X} := \frac{\mathbf{x}\mathbf{x}^*}{|\mathbf{x}\mathbf{x}^*|}$$

$$T_{\delta}(\widetilde{X})_{(j,k)} = e^{i(\arg(x_j) - \arg(x_k))}, \quad |j - k| \mod d < \delta$$

Phase Synchronization

(a) The leading eigenvector (appropriately normalized) of

$$\begin{split} T_{\delta}(\widetilde{X}) &= \operatorname{diag}\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) \ T_{\delta}(\mathbb{1}\mathbb{1}^*) \operatorname{diag}\left(\frac{\mathbf{x}^*}{|\mathbf{x}|}\right) \\ &= \operatorname{diag}\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) \ F\Lambda F^* \operatorname{diag}\left(\frac{\mathbf{x}^*}{|\mathbf{x}|}\right) \end{split}$$

is the vector of phases of \mathbf{x}

<u>Note</u>: $\frac{\mathbf{x}}{|\mathbf{x}|} = [e^{\mathrm{i}\phi_1} \ e^{\mathrm{i}\phi_2} \ \dots e^{\mathrm{i}\phi_d}]^T$ is the (unknown) phase vector! $F \in \mathbb{C}^{d \times d}$ is the discrete Fourier transform (DFT) matrix

Useful Observations (II)

Why this is useful:

- (a) Diagonal entries of $T_{\delta}(\mathbf{x}\mathbf{x}^*)$ are $|x_i|^2$.
- (b) Off-diagonals give the relative phases

$$\widetilde{X} := rac{\mathbf{x}\mathbf{x}^*}{|\mathbf{x}\mathbf{x}^*|}$$

$$T_{\delta}(\widetilde{X})_{(j|k)} = \mathrm{e}^{\mathrm{i}(\arg(x_j) - \arg(x_k))}, \quad |j-k| \mod d < \delta$$

Phase Synchronization:

(a) The leading eigenvector (appropriately normalized) of

$$\begin{split} T_{\delta}(\widetilde{X}) &= \operatorname{diag}\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) \ T_{\delta}(\mathbb{1}\mathbb{1}^*) \operatorname{diag}\left(\frac{\mathbf{x}^*}{|\mathbf{x}|}\right) \\ &= \operatorname{diag}\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) \ F\Lambda F^* \operatorname{diag}\left(\frac{\mathbf{x}^*}{|\mathbf{x}|}\right) \end{split}$$

is the vector of phases of x.

Define the map $\mathcal{A}:\mathbb{C}^{d imes d}
ightarrow\mathbb{C}^D$

$$\mathcal{A}(Z)_{(\ell,j)} = \langle Z, S_{\ell}^* m^{(j)} m^{(j)^*} S_{\ell} \rangle_{(\ell,j)}.$$

and its restriction $\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d\times d})}$ to our subspace.

Define the map $\mathcal{A}:\mathbb{C}^{d imes d}
ightarrow\mathbb{C}^D$

$$\mathcal{A}(Z)_{(\ell,j)} = \langle Z, S_{\ell}^* m^{(j)} m^{(j)^*} S_{\ell} \rangle_{(\ell,j)}.$$

and its restriction $\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d\times d})}$ to our subspace.

In the noisy setting:

Step 1: Estimate $T_{\delta}(\mathbf{x}\mathbf{x}^*)$ by the banded matrix

$$Z = T_{\delta}(Z) := \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2} \right) + \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2} \right)^{*}.$$

- Step 2: Estimate the phase by computing the leading eigenvector of $T_{\delta}\left(\frac{Z}{|Z|}\right)$.
- Step 3: Combine phase with $\sqrt{\cdot}$ of diagonal entries of $T_{\delta}(Z)$ to estimate ${\bf x}$.

Define the map $\mathcal{A}:\mathbb{C}^{d imes d}
ightarrow\mathbb{C}^D$

$$\mathcal{A}(Z)_{(\ell,j)} = \langle Z, S_{\ell}^* m^{(j)} m^{(j)^*} S_{\ell} \rangle_{(\ell,j)}.$$

and its restriction $\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d\times d})}$ to our subspace.

In the noisy setting:

Step 1: Estimate $T_{\delta}(\mathbf{x}\mathbf{x}^*)$ by the banded matrix

$$Z = T_{\delta}(Z) := \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2} \right) + \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2} \right)^*.$$

- Step 2: Estimate the phase by computing the leading eigenvector of $T_\delta\left(\frac{Z}{|Z|}\right)$.
- Step 3: Combine phase with $\sqrt{\cdot}$ of diagonal entries of $T_{\delta}(Z)$ to estimate ${\bf x}$.

Define the map $\mathcal{A}:\mathbb{C}^{d imes d}
ightarrow\mathbb{C}^D$

$$\mathcal{A}(Z)_{(\ell,j)} = \langle Z, S_{\ell}^* m^{(j)} m^{(j)^*} S_{\ell} \rangle_{(\ell,j)}.$$

and its restriction $\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d\times d})}$ to our subspace.

In the noisy setting:

Step 1: Estimate $T_{\delta}(\mathbf{x}\mathbf{x}^*)$ by the banded matrix

$$Z = T_{\delta}(Z) := \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2} \right) + \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2} \right)^*.$$

- Step 2: Estimate the phase by computing the leading eigenvector of $T_{\delta}\left(\frac{Z}{|Z|}\right)$.
- Step 3: Combine phase with $\sqrt{\cdot}$ of diagonal entries of $T_{\delta}(Z)$ to estimate ${\bf x}.$

Define the map $\mathcal{A}:\mathbb{C}^{d imes d}
ightarrow\mathbb{C}^D$

$$\mathcal{A}(Z)_{(\ell,j)} = \langle Z, S_{\ell}^* m^{(j)} m^{(j)^*} S_{\ell} \rangle_{(\ell,j)}.$$

and its restriction $\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d\times d})}$ to our subspace.

In the noisy setting:

Step 1: Estimate $T_{\delta}(\mathbf{x}\mathbf{x}^*)$ by $\underline{\mathit{Cost}}: \mathcal{O}(d \cdot \delta^3 + \delta \cdot d \log d)$ flops

$$Z = T_{\delta}(Z) := \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2} \right) + \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2} \right)^{*}.$$

- Step 2: Estimate the phase by computing the leading eigenvector of $T_{\delta}\left(\frac{Z}{|Z|}\right)$. $\underline{\mathit{Cost}}$: $\mathcal{O}(\delta^2 \cdot d \log d)$ flops
- Step 3: Combine phase with $\sqrt{\cdot}$ of diagonal entries of $T_{\delta}(Z)$ to estimate \mathbf{x} . $\underline{\textit{Total Cost}}: \ \mathcal{O}(\delta^2 \cdot d \log d + d \cdot \delta^3) \text{ flops}$

Outline

- 1 Introduction
- Solving the Phase Retrieval Problem
 Measurement Constructions
 Structured Lifting Obtaining Phase Difference Information
 Angular Synchronization Solving for the Individual Phases
- 3 Theoretical Guarantees
- 4 Numerical Simulations
- 5 Extensions

Well-Conditioned Linear Systems

Theorem (Iwen, V., Wang 2015)

Choose entries of the measurement mask $(\mathbf{m}^{(i)})$ as follows:

$$(\mathbf{m}^{(i)})_{\ell} = \left\{ \begin{array}{ll} \frac{\mathbb{Q}^{-\ell/a}}{\sqrt[4]{2\delta-1}} \cdot \mathbb{Q}^{\frac{2\pi \mathbf{i} \cdot i \cdot \ell}{2\delta-1}}, & \ell \leq \delta \\ 0, & \ell > \delta \end{array} \right., \qquad \begin{array}{l} a := \max\left\{4, \frac{\delta-1}{2}\right\}, \\ i = 1, 2, \dots, N. \end{array}$$

Then, the resulting system matrix for the phase differences (step 1), $\mathcal{A}|_{T_{\delta}}$, has condition number

$$\kappa(\mathcal{A}|_{T_{\delta}}) < \max\left\{144 \mathrm{e}^2, \frac{9 \mathrm{e}^2}{4} \cdot (\delta - 1)^2\right\}.$$

- Deterministic (windowed DFT-type) measurement masks!
- δ is typically chosen to be $c \log_2 d$ with c small (2–3).
- Extensions: oversampling, random masks

Well-Conditioned Linear Systems

Mask Construction II (Iwen, Preskitt, Saab, V. 2016)

Choose entries of the measurement mask (\mathbf{m}_i) as follows:

For
$$i = 1, 2, ..., \delta - 1$$

$$egin{aligned} \mathbf{m}_1 &= \mathbf{e}_1 \ \mathbf{m}_{2i} &= \mathbf{e}_1 + \mathbf{e}_{i+1} \ \mathbf{m}_{2i+1} &= \mathbf{e}_1 - \mathrm{i} \mathbf{e}_{i+1} \end{aligned}$$

Then, the resulting system matrix for the phase differences, M^\prime , has condition number

$$\kappa(M') < c\delta.$$

Recovery Guarantee

Theorem (Iwen, Preskitt, Saab, V. 2016)

Let $x_{\min} := \min_j |x_j|$ be the smallest magnitude of any entry in \mathbf{x} . Then, the estimate \mathbf{z} produced by the proposed algorithm satisfies

$$\min_{\theta \in [0,2\pi]} \left\| \mathbf{x} - \mathrm{e}^{\mathrm{i}\theta} \mathbf{z} \right\|_2 \leq C \left(\frac{\|\mathbf{x}\|_{\infty}}{x_{\min}^2} \right) \left(\frac{d}{\delta} \right)^2 \kappa \|\eta\|_2 + C d^{\frac{1}{4}} \sqrt{\kappa \|\eta\|_2},$$

where $C \in \mathbb{R}^+$ is an absolute universal constant.

- This result yields a *deterministic* recovery result for any signal x which contains no zero entries.
- A randomized result can be derived for arbitrary x by right multiplying the signal x with a random "flattening" matrix. (this is also useful for performing sparse phase retrieval!)

Main Elements of the Proof

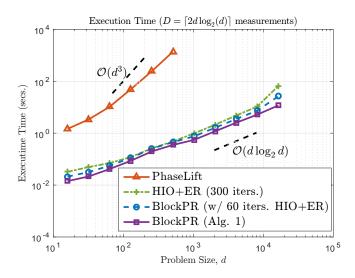
- 1 Well-conditioned measurements:
 - Linear system for the lifted variables is block-circulant
 - Bound condition number of each block to find κ .
- 2 (Reconstruction error) \approx (Phase error) + (Magnitude error)
 - Magnitude error (second term in error guarantee) follows from error in inverting linear system for lifted variables
 - Phase error (first term in error guarantee) evaluate eigenvalue gap
 + Cheeger inequality of [Bandeira et al. 2013] + adaptation of proof method from [Alexeev et al. 2014]

Note: Bound not optimized; for example, magnitude estimation can be improved!

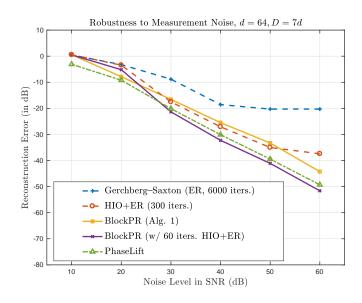
Outline

- 1 Introduction
- Solving the Phase Retrieval Problem
 Measurement Constructions
 Structured Lifting Obtaining Phase Difference Information
 Angular Synchronization Solving for the Individual Phases
- 3 Theoretical Guarantees
- 4 Numerical Simulations
- 5 Extensions

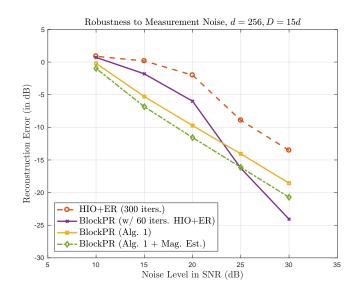
Efficiency - FFT-time phase retrieval



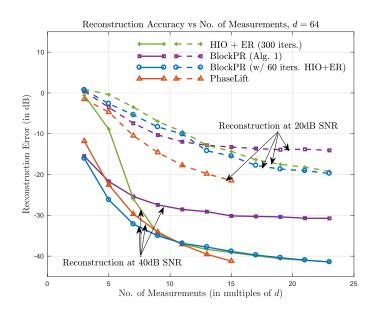
Robustness to Measurement Errors



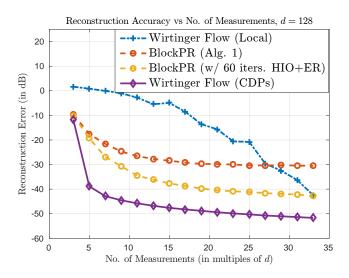
Robustness to Measurement Errors



Reconstruction Error vs. No. of Measurements



Local vs Global Measurements



Summary and Current/Future Research Directions

Today

- Phase retrieval is an immensely challenging problem seen in important applications such as x-ray crystallography.
- Proposed mathematical framework: Essentially linear-time robust phase retrieval from deterministic local correlation measurement constructions with rigorous recovery guarantee.

Current and Future Directions

- More robust measurement constructions
- Compressive phase retrieval
- Extensions to 2D and Ptychographic datasets
- Continuous problem formulation

Outline

- 1 Introduction
- Solving the Phase Retrieval Problem
 Measurement Constructions
 Structured Lifting Obtaining Phase Difference Information
 Angular Synchronization Solving for the Individual Phases
- 3 Theoretical Guarantees
- 4 Numerical Simulations
- 5 Extensions

Extension - 2D Phase Retrieval

- Preliminary results for 2D masks with tensor product structure
- Results from 1D extend to 2D; 2D linear system is a tensor product of the 1D linear system (up to row permutations)
- Eigenvector-based phase synchronization also works calculation of spectral gap and error analysis pending

Test Image (256×256 pixels)

Recon. (Rel. error 2.857×10^{-16})

Extension - Compressive Phase Retrieval

$$\begin{array}{ll} \underline{\mathsf{Model}} & \mathsf{find} \quad \mathbf{x} \in \mathbb{C}^d \quad \mathsf{given} \quad \left| \mathcal{M} \mathbf{x} \right|^2 + \mathbf{n} = \mathbf{y} \in \mathbb{R}^D \\ & \mathsf{where} \ \mathbf{x} \ \mathsf{is} \ k\text{-sparse, with} \ k \ll d, \\ & |\cdot| \ \mathsf{is} \ \mathsf{entry\text{-}wise} \ \mathsf{absolute} \ \mathsf{value, and} \\ & \mathcal{M} \ \mathsf{is} \ \mathsf{a} \ \mathsf{measurement} \ \mathsf{matrix}. \end{array}$$

Measurement Design Assume $\mathcal{M} = \mathcal{PC}$ where

 $\mathcal{P} \in \mathbb{C}^{D \times \tilde{d}}$ is an admissible phase retrieval matrix with an associated recovery algorithm $\Phi_{\mathcal{P}}: \mathbb{R}^D \to \mathbb{C}^{\tilde{d}}$, and

 $\mathcal{C}\in\mathbb{C}^{ ilde{d} imes d}$ is an admissible compressive sensing matrix with an associated recovery algorithm $\Delta_{\mathcal{C}}:\mathbb{C}^{ ilde{d}} o\mathbb{C}^{d}$.

Recovery Algorithm (Two-stage) $\Delta_{\mathcal{C}} \circ \Phi_{\mathcal{P}} : \mathbb{R}^D \to \mathbb{C}^d$

Performance Metrics No. of measurements required is $\mathcal{O}(k \ln(d/k))$ Computational cost (sub-linear) is $\mathcal{O}(k \ln^c k \ln d)$

Pubs./Preprints/Code (see www-personal.umich.edu/~adityavv)

M. Iwen, B. Preskitt, R. Saab and A. Viswanathan. "Phase Retrieval from Local Measurements: Improved Robustness via Eigenvector-Based Angular Synchronization." arXiv:1612.01182, 2016.

M. Iwen, A. Viswanathan, and Y. Wang. "Fast Phase Retrieval from Local Correlation Measurements." SIAM J. Imag. Sci., Vol. 9(4), pp. 1655–1688, Oct. 2016.

Compressive Phase Retrieval

M. Iwen, A. Viswanathan, and Y. Wang. "Robust Sparse Phase Retrieval Made Easy." Appl. Comput. Harmon. Anal., Vol. 42(1), pp. 135–142, Jan. 2017.

2D Phase Retrieval

Mark Iwen, Brian Preskitt, Rayan Saab and A. Viswanathan. "Phase Retrieval from Local Measurements in Two Dimensions.", Proc. SPIE 10394, Wavelets and Sparsity XVII, 103940X, Aug. 2017.

<u>Code</u> https://bitbucket.org/charms/{blockpr,sparsepr}

Questions?

