
Block-Circulant Constructions for Robust and
Efficient Phase Retrieval

Aditya Viswanathan
aditya@math.msu.edu

Computational / Applied Math Seminar
Arizona State University

13th May 2015



Joint work with

Yang Wang Mark Iwen

Research supported in part by National Science Foundation grant
DMS 1043034.



Outline

1 The Phase Retrieval Problem

2 Existing Approaches

3 Proposed Computational Framework

4 Numerical Results

5 Extensions: Sparse Phase Retrieval



The Phase Retrieval Problem

find x ∈ Cd given |Mx| = b ∈ RD,

where

• b ∈ RD are the magnitude or intensity measurements.

• M ∈ CD×d is a measurement matrix associated with these
measurements.

Let A : RD → Cd denote the recovery method.

The phase retrieval problem involves designing measurement
matrix and recovery method pairs.
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Applications of Phase Retrieval

From “Phase Retrieval from Coded Diffraction Patterns” by E. J. Candes, X. Li, and M. Soltanolkotabi.

Important applications of Phase Retrieval

• X-ray crystallography

• Diffraction imaging

• Transmission Electron Microscopy (TEM)

In many molecular imaging applications, the detectors only capture
intensity measurements.
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The Importance of Phase – An Illustration

• The phase encapsulates vital information about a signal

• Key features of the signal are retained even if the magnitude
is lost
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The Importance of Phase – An Illustration
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The Importance of Phase – An Illustration
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Objectives

• Computational Efficiency – Can the recovery algorithm A be
computed in O(d logc d)-time? Here, c is a small constant.

• Computational Robustness: The recovery algorithm, A,
should be robust to additive measurement errors (i.e., noise).

• Minimal Measurements: The number of linear measurements,
D, should be minimized to the greatest extent possible.
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Alternating Projection Methods
[Gerchberg and Saxton, 1972] and [Fienup, 1978]

• These methods operate by alternately projecting the current
iterate of the signal estimate over two sets of constraints.

• One of the constraints is the magnitude of the measurements.

• The other constraint depends on the application – positivity,
support constraints, . . .
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Alternating Projection Methods
[Gerchberg and Saxton, 1972] and [Fienup, 1978]

Algorithm 1 Gerchberg–Saxton

Input: Measurements b = |Mx| ∈ RD, Initial estimate x0 ∈ Cd.
1: for i = 0 to N − 1 do
2: Compute y = Mxi
3: Set ỹ = b ∠y
4: Compute xi+1 = M †ỹ
5: end for

• N is the number of iterations

• M † is the Moore-Penrose pseudo-inverse
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Alternating Projection Methods
[Gerchberg and Saxton, 1972] and [Fienup, 1978]

Issues

• Convergence is slow – the algorithm is likely to stagnate at
stationary points

• Requires careful selection of and tuning of the parameters

• Mathematical aspects of the algorithm not well known. If
there is proof of convergence, it is only for special cases.

Applications

• Can be used as a post-processing step to speed up more
rigorous (but slow) computational approaches
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PhaseLift [Candes et. al., 2012]

• Modify the problem to that of finding the rank-1 matrix
X = xx∗

• Uses multiple random illuminations (or masks) as
measurements.

• The resulting problem can be cast as a rank minimization
optimization problem (NP hard)

• Instead, solve a convex relaxation – trace minimization
problem (SDP)
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PhaseLift [Candes et. al., 2012]

Notation

• Let wm be a mask. The measurements may be written as

|〈wm,x〉|2 = Tr(x∗wm(wm)∗x) = Tr(wm(wm)∗xx∗)

:= Tr(WmX).

• Let W be the linear operator mapping positive semidefinite
matrices into {Tr(WmX) : m = 0, . . . , L}.

• The phase retrieval problem then becomes

minimize rank(X)

subject to
W(X) = b
X � 0
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matrices into {Tr(WmX) : k = 0, . . . , L}.

• The phase retrieval problem then becomes

minimize rank(X)
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X � 0

• Unfortunately, this problem is NP hard!
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PhaseLift [Candes et. al., 2012]

Notation

• Let wm be a mask. The measurements may be written as

|〈wm,x〉|2 = Tr(x∗wm(wm)∗x) = Tr(wm(wm)∗xx∗)

:= Tr(WmX).

• Let W be the linear operator mapping positive semidefinite
matrices into {Tr(WmX) : k = 0, . . . , L}.

• Instead, use the convex relaxation

minimize trace(X)

subject to
W(X) = b
X � 0

• Implemented using a semidefinite program (SDP).
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PhaseLift [Candes et. al., 2012]

Advantages

• Recovery guarantees for random measurements

• Optimization problems of the above type are well-understood

• Mature software for solving the resulting optimization
problem.

Disadvantages

• SDP solvers are still slow!

• General-purpose solvers have complexity O
(
d3
)
; FFT-based

measurements may be solved in O
(
d2
)

time
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Other Approaches

• Phase Retrieval with Polarization [Alexeev et. al. 2014]
• Graph-theoretic frame-based approach
• Requires O(d log d) measurements
• Error guarantee similar to PhaseLift

• Phase Recovery, MaxCut and Complex Semidefinite
Programming [Waldspurger et. al. 2013]
• Related to graph partitioning problems
• Can be shown to be equivalent to PhaseLift under certain

conditions
• Requires solving a SDP
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Overview of the Computational Framework

1 Use compactly supported masks and correlation
measurements to obtain phase difference estimates.

|corr(w,x)|2 solve−−−−−−−−→
linear system

xjxj+k, k = 0, . . . , δ

• w is a mask or window function with δ + 1 non-zero entries.
• xjxj+k gives us the (scaled) difference in phase between

entries xj and xj+k.

2 Solve an angular synchronization problem on the phase
differences to obtain the unknown signal.

xjxj+k
angular−−−−−−−−−−→

synchronization
xj

Constraints on x: We require x to be non-sparse.
(The number of consecutive zeros in x should be less than δ)
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Correlations with Support-Limited Functions

• Let x = [x0 x1 . . . xd−1]
T ∈ Cd be the unknown signal.

• Let w = [w0 w1 . . . wδ 0 . . . 0]T denote a support-limited
mask. It has δ + 1 non-zero entries.

• We are given the (squared) correlation measurements

(bm)2 = |corr(wm,x)|2 , m = 0, . . . , L

corresponding to L+ 1 distinct masks.
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Correlations with Support-Limited Functions

Explicitly writing out each measurement, we have

(bmk )2 =

∣∣∣∣∣∣
δ∑
j=0

wmj · xk+j

∣∣∣∣∣∣
2

=

δ∑
i,j=0

wmi w
m
j xk+jxk+i

We can also lift these equations to a set of linear equations!
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Solving for Phase Differences

Ordering {xnx̄n+l} lexicographically, we obtain a linear system of
equations for the phase differences.

Example: x ∈ Rd, d = 4, δ = 1
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The system matrix M ′ is block circulant!
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Consequences of the Block Circulant Structure

• There exists a unitary decomposition of the system matrix

• The condition number of the system matrix is a function of
the individual blocks. In particular, we have

κ(M ′) =

max
|t|=1

σ1(t)

min
|t|=1

σδ(t)
,

where σ1(t), σδ(t) are the largest/smallest singular values of

J(t) = M ′0 + tM ′1 + · · ·+ tδ−1M ′δ

• The linear system for the phase differences can be solved
efficiently using FFTs
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Entries of the Measurement Matrix

Two strategies

• Random entries (Gaussian, Uniform, Bernoulli, . . . )

• Structured measurements, e.g.,

w`i =

{
e−i/a
4√2δ+1

· e
2πi·i·`
2δ+1 , i ≤ δ

0, i > δ
.

where a := max
{

4, δ−12
}

, and 0 ≤ ` ≤ L.
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Random Measurements

Representative Condition Numbers

δ = 3 δ = 6 δ = 9

Critical sampling 34.89 124.05 465.32

Oversampling factor 2 3.73 11.73 13.30

Oversampling factor 3 3.29 6.08 8.60

• Critical sampling: D = (2δ + 1)d, where D denotes the
number of measurements.

• Oversampling: D = γ · (2δ + 1)d, where γ is the oversampling
factor

• Typically, we use γ = 1.5.
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Structured Measurements

Theorem (Iwen, V., Wang 2015)

Choose entries of the measurement mask wm as follows:

w`i =

{
e−i/a
4√2δ+1

· e
2πi·i·`
2δ+1 , i ≤ δ

0, i > δ
, a := max

{
4,
δ − 1

2

}
, ` ∈ [0, L].

Then, the resulting system matrix for the phase differences, M ′,
has condition number

κ(M ′) < max

{
144e2,

9e2

4
· (δ − 1)2

}
.

Note:

• w`i are scaled entries of a DFT matrix.

• δ is typically chosen to be 6–12.

• No oversampling necessary!
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Angular Synchronization

1 Use compactly supported masks and correlation
measurements to obtain phase difference estimates.

|corr(w,x)|2 solve−−−−−−−−→
linear system

xjxj+k, k = 0, . . . , δ

• w is a mask or window function with δ + 1 non-zero entries.
• xjxj+k gives us the (scaled) difference in phase between

entries xj and xj+k.

2 Solve an angular synchronization problem on the phase
differences to obtain the unknown signal.

xjxj+k
angular−−−−−−−−−−→

synchronization
xj

Constraints on x: We require x to be non-sparse.
(The number of consecutive zeros in x should be less than δ)
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Angular Synchronization

The Angular Synchronization Problem

Estimate d unknown angles θ1, θ2, . . . , θd ∈ [0, 2π) from d(δ + 1)
noisy measurements of their differences

∆θij := ∠xi − ∠xj = ∠

(
xixj√
xixi·xjxj

)
mod 2π.
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Angular Synchronization

The unknown phases (modulo a global phase offset) may be
obtained by solving a simple greedy algorithm.

1 Set the largest magnitude component to have zero phase
angle; i.e.,

∠xk = 0, k := argmax
i
xixi.

2 Use this entry to set the phase angles of the next δ entries;
i.e.,

∠xj = ∠xk −∆θkj , j = 1, . . . , δ.

3 Use the next largest magnitude component from these δ
entries and repeat the process.
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Recovering Arbitrary Vectors

• Recall: Due to compact support of our masks, only ”flat”
vectors can be recovered

• Arbitrary vectors can be ”flattened” by multiplication with a
random unitary matrix such as W = PFB, where
• P ∈ {0, 1}d×d is a permutation matrix selected uniformly at

random from the set of all d× d permutation matrices

• F is the unitary d× d discrete Fourier transform matrix

• B ∈ {−1, 0, 1}d×d is a random diagonal matrix with i.i.d.
symmetric Bernoulli entries on its diagonal
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A Noiseless Recovery Result

Theorem (Iwen, V., Wang 2015)

Let x ∈ Cd with d sufficiently large. Then, one can select a
random measurement matrix M̃ ∈ CD×d such that the following
holds with probability at least 1− 1

c·ln2(d)·ln3(ln d) : Our algorithm

will recover an x̃ ∈ Cd with

min
θ∈[0,2π]

∥∥∥x− eiθx̃∥∥∥
2

= 0

when given the noiseless magnitude measurements |M̃x|2 ∈ RD.
Here D can be chosen to be O(d · ln2(d) · ln3 (ln d)). Furthermore,
the algorithm will run in O(d · ln3(d) · ln3 (ln d))-time in that case.

To do: Robustness to measurement noise...
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Numerical Results

• Test signals (Real and Complex) – iid Gaussian, uniform
random, sinusoidal signals

• Noise model
b̃ = b + ñ, ñ ∼ U [0, a].

Value of a determines SNR

SNR = 10 log10

(
noise power

signal power

)
= 10 log10

(
a2/3

||b||2/d

)
• Errors reported as SNR (dB)

Error (dB) = 10 log10

(
‖x̂− x‖2

‖x‖2

)
(x̂ – recovered signal, x – true signal)

18 / 40



Noiseless Case

• iid Complex Gaussian
signal

• d = 64

• δ = 1
(3d measurements)

• No noise

• Reconstruction Error

‖x̂− x‖2

‖x‖2
= 6.436×10−15
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Efficiency

Problem Dimension, d
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O(d3)

O(d log d)

• iid Complex Gaussian
signal

• High SNR applications

• 5d measurements

• 64k problem in ∼ 20 s in
Matlab!
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Robustness

Noise Level in SNR (dB)
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Block Circ. (D = 15d)

• iid complex Gaussian
signal

• d = 64

• 7d measurements

• Deterministic (windowed
Fourier-like)
measurements
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Robustness
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D = 3d log d
D = 4d log d
D = 6d log d

• iid complex Gaussian
signal

• d = 2048

• Not feasible with
PhaseLift or Alternating
projection methods on a
laptop in Matlab

• Random measurements
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Discussion

(+)

• Well-conditioned deterministic measurement matrices with
explicit condition number bounds

• Significantly faster (FFT time) than comparable SDP-based
methods

(-)

• Requires 2× to 4× more measurements than equivalent
SDP-based methods
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The Sparse Phase Retrieval Problem

find x ∈ Cd given |Mx| = b ∈ RD,

where

• x is k-sparse, with k � d.

• b ∈ RD are the magnitude or intensity measurements.

• M∈ CD×d is a measurement matrix associated with these
measurements.

Let A : RD → Cd denote the recovery method.

The sparse phase retrieval problem involves designing measurement
matrix and recovery method pairs.
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Sparse Phase Retrieval – Objectives

• Computational Efficiency

• Computational Robustness: The recovery algorithm, A,
should be robust to additive measurement errors (i.e., noise).

• Minimal Measurements: The number of linear measurements,
D, should be minimized to the greatest extent possible. In
particular, can we have robust reconstruction for
D = O(k log(d/k)) measurements?
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Existing Frameworks

• Alternating Projections with Sparsity Constraints [Mukherjee
and Seelamantula, 2012]

• Compressive Phase Retrieval via Lifting (CPRL) [Ohlsson et.
al., 2012]

• GrEedy Sparse PhAse Retrieval (GESPAR) algorithm
[Shechtman et. al., 2014]

• Compressive Phase Retrieval via Generalized Approximate
Message Passing [Schniter, Rangan 2014]
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Proposed Computational Framework

Let the measurement matrix M be of the form

M = PC,

where

• P ∈ CD×d̃ is an admissible phase retrieval matrix, and

• C ∈ Cd̃×d is an admissible compressive sensing matrix.

Note: We typically have D = O(d̃) and d̃ = O (k log(d/k)), where
k is the sparsity of x.
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Proposed Computational Framework

1 Solve a (non-sparse) phase retrieval problem
(PhaseLift shown here)

minimize trace(Y )

subject to
W(Y ) = b
Y � 0,

where Y = yy∗ and y ∈ Cd̃ is an intermediate solution.

2 Recover x using a compressive sensing formulation

minimize ||x||1
subject to Cx = y.
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Advantages

• Dramatically reduces the problem dimension.

• Recovery guarantees follow naturally from guarantees for the
Phase Retrieval method employed and Compressive Sensing

• Not limited to Phase Lift – Can work with any phase retrieval
method (Step 1)
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Error Guarantee

• Consider noisy measurements of the form

b := |PCx|2 + n

• P ∈ CD×d̃ is any phase retrieval matrix with an associated
recovery algorithm ΦP : RD → Cd̃ (and error guarantee)

• C ∈ Cd̃×d is any compressive sensing matrix with an
associated recovery algorithm ∆C : Cd̃ → Cd (and error
guarantee)

• Composition of the two recovery algorithms,
∆C ◦ ΦP : RD → Cd, should accurately approximate x ∈ Cd,
up to a global phase factor, from b whenever x is sufficiently
sparse or compressible.
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Error Guarantee

Theorem (PhaseLift: Candes, Li 2014)

Let P ∈ CD×d̃ have its D rows be independently drawn either

uniformly at random from the sphere of radius
√
d̃ in Cd̃, or else as

complex normal random vectors from N (0, Id̃/2) + iN (0, Id̃/2).

Then, ∃ universal constants B̃, C̃, Ã ∈ R+ such that the PhaseLift
procedure ΦP : RD → Cd̃ satisfies

min
θ∈[0,2π]

∥∥∥ ΦP (b)− eiθx
∥∥∥
2
≤ C̃ · ‖n‖1

D‖x‖2

for all x ∈ Cd̃ with probability 1−O(e−B̃D), provided that
D ≥ Ãd̃.
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Error Guarantee

Theorem (Compressive Sensing – Foucart, Rauhut )

Suppose that the matrix C ∈ Cd̃×d satisfies the `2-robust null
space property of order k with constants 0 < ρ < 1 and τ > 0.
Then, for any x ∈ Cd, the vector

x̃ := arg min
z∈Cd

‖z‖1 subject to ‖Cz− y‖2 ≤ η,

where y := Cx + e for some e ∈ Cd̃ with ‖e‖2 ≤ η, will satisfy

‖x− x̃‖2 ≤
C√
k
·
(

inf
z∈Cd,‖z‖0≤k

‖x− z‖1
)

+Aη

for some constants C,A ∈ R+ that only depend on ρ and τ .
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Error Guarantee

Theorem (Iwen, V., Wang 2014)

Let P ∈ CD×d̃ have its D rows be independently drawn either

uniformly at random from the sphere of radius
√
d̃ in Cd̃, or else

as complex normal random vectors from CN (0, Id̃).

Furthermore, suppose that C ∈ Cd̃×d satisfies the `2-robust null
space property of order k with constants 0 < ρ < 1 and τ > 0.
Then,

min
θ∈[0,2π]

∥∥∥eiθx−∆C (ΦP (b))
∥∥∥
2
≤ C√

k
·
(

inf
z∈Cd,‖z‖0≤k

‖x− z‖1
)

+

A · ‖n‖1
D‖Cx‖2

holds for all x ∈ Cd with probability 1−O(e−BD), provided that
D ≥ E · d̃. Here B,E ∈ R+ are universal constants, while
C,A ∈ R+ are constants that only depend on ρ and τ .
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Error Guarantee

When C is a random matrix with i.i.d. subGaussian random
entries, we can further show that

min
θ∈[0,2π]

∥∥∥eiθx−∆C (ΦP (b))
∥∥∥
2
≤ C√

k
·
(

inf
z∈Cd,‖z‖0≤k

‖x− z‖1
)

+A‖n‖2
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Sublinear-time Results

Theorem (Iwen, V., Wang 2015)

There exists a deterministic algorithm A : RD → Cd for which the
following holds: Let ε ∈ (0, 1], x ∈ Cd with d sufficiently large, and
s ∈ [d]. Then, one can select a random measurement matrix
M̃ ∈ CD×d such that

min
θ∈[0,2π]

∥∥∥eiθx−A(|M̃x|2
)∥∥∥

2
≤
∥∥x− x opt

s

∥∥
2
+

22ε
∥∥∥x− xopt

(s/ε)

∥∥∥
1√

s

is true with probability at least 1− 1
C·ln2(d)·ln3(ln d) .a Here D can

be chosen to be O
(
s
ε · ln

3( sε ) · ln
3
(
ln s

ε

)
· ln d

)
. Furthermore, the

algorithm will run in O
(
s
ε · ln

4( sε ) · ln
3
(
ln s

ε

)
· ln d

)
-time in that

case.b

aHere C ∈ R+ is a fixed absolute constant.
bFor the sake of simplicity, we assume s = Ω(log d) when stating the

measurement and runtime bounds above.
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Numerical Results

• Test signals – sparse, unit-norm complex vectors
• non-zero indices are independently and randomly chosen
• non-zero entries are i.i.d. standard complex Gaussians

• Noise model – i.i.d. zero-mean additive Gaussian noise at
different SNRs

• Errors reported as SNR (dB)

Error (dB) = 10 log10

(
‖x̂− x‖22
‖x‖22

)
(x̂ – recovered signal, x – true signal)
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Robustness
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Robustness to Additive Noise: N = 1024, s = 5, m̃ = 371

• Signal size: d = 1024

• Sparsity: k = 5

• 371 measurements (14k log(d/k))
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No. of measurements – Comparison with SDP-based CPRL
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Corresponding Runtime
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Sublinear-Time Results

Sparsity, k
0 5 10 15 20 25 30

E
x
ec
u
ti
on

T
im
e
(i
n

s)

0

5

10

15

20

25

30
Sublinear-Time Compressive Phase Retrieval, n = 220

Execution Time
Linear Slope

• Block Circulant
Phase Retrieval +
Chaining Pursuit
Sub-linear time CS
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Discussion

(+)

• Requires O(k log(d/k)) measurements.

• Significantly faster than comparable (SDP-based) methods.

• Recovery guarantee

(-)

• May require more (a small linear factor) measurements for
small problems.
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Summary

• Robust, efficient (FFT-time) phase retrieval algorithm

• Uses compactly supported masks and a block circulant
construction in conjunction with angular synchronization

• Deterministic, well conditioned measurements masks

• Simple 2-stage method for sparse signals

• First sublinear time compressive phase retrieval algorithm.
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