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The Phase Retrieval Problem

find x ∈ Cd given |Mx| = b ∈ RD,

where

• b ∈ RD are the magnitude or intensity measurements.

• M ∈ CD×d is a measurement matrix associated with these
measurements.

Let A : RD → Cd denote the recovery method.

The phase retrieval problem involves designing measurement
matrix and recovery method pairs.
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Applications of Phase Retrieval

Important applications of Phase Retrieval

• X-ray crystallography

• Diffraction imaging

• Transmission Electron Microscopy (TEM)

In many molecular imaging applications, the detectors only capture
intensity measurements.

Indeed, the design of such detectors is often significantly simpler
than those that capture phase information.
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The Importance of Phase – An Illustration

• The phase encapsulates vital information about a signal

• Key features of the signal are retained even if the magnitude
is lost
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The Importance of Phase – An Illustration

3 / 41



The Importance of Phase – An Illustration
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Objectives

• Computational Efficiency – Can the recovery algorithm A be
computed in O(d log d)-time?

• Computational Robustness: The recovery algorithm, A,
should be robust to additive measurement errors (i.e., noise).

• Minimal Measurements: The number of linear measurements,
D, should be minimized to the greatest extent possible.
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Alternating Projection Methods
[Gerchberg and Saxton, 1972] and [Fienup, 1978]

• These methods operate by alternately projecting the current
iterate of the signal estimate over two sets of constraints.

• One of the constraints is the magnitude of the measurements.

• The other constraint depends on the application – positivity,
support constraints, . . .
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Alternating Projection Methods
[Gerchberg and Saxton, 1972] and [Fienup, 1978]

Algorithm 1 Gerchberg–Saxton

Input: Measurements b = |Mx| ∈ RD, Initial estimate x0 ∈ Cd.
1: for i = 0 to N − 1 do
2: Compute y = Mxi
3: Set ỹ = b ∠y
4: Compute xi+1 = M †ỹ
5: end for

• N is the number of iterations

• M † is the Moore-Penrose pseudo-inverse
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Alternating Projection Methods
[Gerchberg and Saxton, 1972] and [Fienup, 1978]

Issues

• Convergence is slow – the algorithm is likely to stagnate at
stationary points

• Requires careful selection of and tuning of the parameters

• Mathematical aspects of the algorithm not well known. If
there is proof of convergence, it is only for special cases.

Applications

• Can be used as a post-processing step to speed up more
rigorous (but slow) computational approaches
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PhaseLift [Candes et. al., 2012]

• Modify the problem to that of finding the rank-1 matrix
X = xx∗

• Uses multiple random illuminations (or masks) as
measurements.

• The resulting problem can be cast as a rank minimization
optimization problem (NP hard)

• Instead, solve a convex relaxation – trace minimization
problem (SDP)
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PhaseLift [Candes et. al., 2012]

Notation

• Let wm be a mask. The measurements may be written as

|〈wm,x〉|2 = Tr(x∗wm(wm)∗x) = Tr(wm(wm)∗xx∗)

:= Tr(WmX).

• Let W be the linear operator mapping positive semidefinite
matrices into {Tr(WmX) : m = 0, . . . , L}.

• The phase retrieval problem then becomes

minimize rank(X)

subject to
W(X) = b
X � 0
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PhaseLift [Candes et. al., 2012]

• Consider noisy measurements b = |Mx|2 + n, b,n ∈ RD.

• Let ΦM : RD → Cd denote the PhaseLift recovery algorithm.

Theorem (Candes, Li 2014)

Let M ∈ CD×d have its D rows be independently drawn either
uniformly at random from the sphere of radius

√
d in Cd, or else as

complex normal random vectors from N (0, Id/2) + iN (0, Id/2).
Then, ∃ universal constants B̃, C̃, Ã ∈ R+ such that the PhaseLift
procedure ΦM : RD → Cd satisfies

min
θ∈[0,2π]

∥∥∥ ΦM (b)− eiθx
∥∥∥
2
≤ C̃ ·min

(
‖x‖2,

‖n‖1
D‖x‖2

)
for all x ∈ Cd with probability 1−O(e−B̃D), provided that
D ≥ Ãd.
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PhaseLift [Candes et. al., 2012]

Advantages

• Recovery guarantees for random measurements

• Optimization problems of the above type are well-understood

• Mature software for solving the resulting optimization
problem.

Disadvantages

• SDP solvers are still slow!

• General-purpose solvers have complexity O
(
d3
)
; FFT-based

measurements may be solved in O
(
d2
)

time
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Other Approaches

• Phase Retrieval with Polarization [Alexeev et. al. 2014]
• Graph-theoretic frame-based approach
• Requires O(d log d) measurements
• Error guarantee similar to PhaseLift

• Phase Recovery, MaxCut and Complex Semidefinite
Programming [Waldspurger et. al. 2013]

• Related to graph partitioning problems
• Can be shown to be equivalent to PhaseLift under certain

conditions
• Requires solving a SDP
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Overview of the Computational Framework

1 Use compactly supported masks and correlation
measurements to obtain phase difference estimates.

|corr(w,x)|2 solve−−−−−−−−→
linear system

xjxj+k, k = 0, . . . , δ

• w is a mask or window function with δ + 1 non-zero entries.
• xjxj+k gives us the (scaled) difference in phase between

entries xj and xj+k.

2 Solve an angular synchronization problem on the phase
differences to obtain the unknown signal.

xjxj+k
angular−−−−−−−−−−→

synchronization
xj

Constraints on x: We require x to be non-sparse.
(The number of consecutive zeros in x should be less than δ)
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Correlations with Support-Limited Functions

• Let x = [x0 x1 . . . xd−1]
T ∈ Cd be the unknown signal.

• Let w = [w0 w1 . . . wδ 0 . . . 0]T denote a support-limited
mask. It has δ + 1 non-zero entries.

• We are given the (squared) correlation measurements

(bm)2 = |corr(wm,x)|2 , m = 0, . . . , L

corresponding to L+ 1 distinct masks.
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Correlations with Support-Limited Functions

Explicitly writing out the correlation, we have

(bmk )2 =

∣∣∣∣∣∣
δ∑
j=0

wmj · xk+j

∣∣∣∣∣∣
2

=

δ∑
i,j=0

wmi w
m
j xk+jxk+i

=:

δ∑
i,j=0

wiwjZk+j,i−j ,

where Zn,l := xnxn+l, −δ ≤ l ≤ δ.
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Solving for Phase Differences

Ordering {Zn,l} lexicographically, second index first, we obtain a
linear system of equations for the phase differences.

Example: x ∈ Rd, d = 4, δ = 1
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The system matrix M ′ is block circulant!
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Consequences of the Block Circulant Structure

• There exists a unitary decomposition of the system matrix

• The condition number of the system matrix is a function of
the individual blocks. In particular, we have

κ(M ′) =

max
|t|=1

σ1(t)

min
|t|=1

σδ(t)
,

where σ1(t), σδ(t) are the largest/smallest singular values of

J(t) = M ′0 + tM ′1 + · · ·+ tδ−1M ′δ

• The linear system for the phase differences can be solved
efficiently using FFTs
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Entries of the Measurement Matrix

Two strategies

• Random entries (Gaussian, Uniform, Bernoulli, . . . )

• Structured measurements
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Random Measurements

Representative Condition Numbers

δ = 3 δ = 6 δ = 9

Critical sampling 34.89 124.05 465.32

Oversampling factor 2 3.73 11.73 13.30

Oversampling factor 3 3.29 6.08 8.60

• Critical sampling: D = (2δ + 1)d, where D denotes the
number of measurements.

• Oversampling: D = γ · (2δ + 1)d, where γ is the oversampling
factor

• Typically, we use γ = 1.5.
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Structured Measurements

Theorem (Iwen, V., Wang 2014)

Choose entries of the measurement mask wm as follows:

w`i =

{
e−i/a
4√2δ+1

· e
2πi·i·`
2δ+1 , i ≤ δ

0, i > δ
a ∈

[
4,
δ − 1

2

)
, 0 ≤ ` ≤ L.

Then, the resulting system matrix for the phase differences, M ′,
has condition number

κ(M ′) < max

{
144e2,

9e2

4
· (δ − 1)2

}
.

Note:

• w`i are scaled entries of a DFT matrix.

• δ is typically chosen to be 6–12.

• No oversampling necessary!
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Angular Synchronization

The Angular Synchronization Problem

Estimate d unknown angles θ1, θ2, . . . , θd ∈ [0, 2π) from δ + 1
noisy measurements of their differences θij := θi − θj mod 2π.

Recall: ∠Zi,j = ∠xi − ∠xi+j .
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Angular Synchronization

The unknown phases (modulo a global phase offset) may be
obtained by solving a simple greedy algorithm.

1 Set the largest magnitude component to have zero phase
angle; i.e.,

∠xj = 0, j = argmax
i
Zi,0.

Note: (by definition) |xi|2 = Zi,0, i = 0, . . . , d− 1.

2 Use this entry to set the phase angles of the next δ entries;
i.e.,

∠xk = ∠xj − ∠Zj,k, k = 1, . . . , δ.

3 Use the next largest magnitude component from these δ
entries and repeat the process.
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Recovering Arbitrary Vectors

• Recall: Due to compact support of our masks, only ”flat”
vectors can be recovered

• Arbitrary vectors can be ”flattened” by multiplication with a
random unitary matrix such as W = PFB, where

• P ∈ {0, 1}d×d is a permutation matrix selected uniformly at
random from the set of all d× d permutation matrices

• F is the unitary d× d discrete Fourier transform matrix

• B ∈ {−1, 0, 1}d×d is a random diagonal matrix with i.i.d.
symmetric Bernoulli entries on its diagonal
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Runtime Analysis

• For flat vectors, total runtime complexity is

O
(
d · δ3 + δ · d log d

)
• O(δ · d log d) – FFT evaluations required to evaluate the

unitary decomposition of system matrix M ′

• O(d · δ3) – invert blocks in the matrix M ′.

• For arbitrary vectors, using the flattening matrix W discussed
previously, total runtime complexity is

O
(
d · log3(d) · log3(log d)

)
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Numerical Results

• Test signals (Real and Complex) – iid Gaussian, uniform
random, sinusoidal signals

• Noise model
b̃ = b + ñ, ñ ∼ U [0, a].

Value of a determines SNR

SNR = 10 log10

(
noise power

signal power

)
= 10 log10

(
a2/3

||b||2/d

)
• Errors reported as SNR (dB)

Error (dB) = 10 log10

(
‖x̂− x‖2

‖x‖2

)
(x̂ – recovered signal, x – true signal)
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Noiseless Case

• iid Complex Gaussian
signal

• d = 64

• δ = 1
(3d measurements)

• No noise

• Reconstruction Error

‖x̂− x‖2

‖x‖2
= 6.436×10−15
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Efficiency

Problem Dimension, d
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• iid Complex Gaussian
signal

• High SNR applications

• 5d measurements

• 64k problem in ∼ 20 s in
Matlab!
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Robustness

Noise Level in SNR (dB)
20 30 40 50 60

R
ec
o
n
st
ru
ct
io
n
E
rr
o
r
(d
B
)

-60

-50

-40

-30

-20

-10

Robustness to Additive Noise, d = 64, D = 7d

PhaseLift
Gerchberg-Saxton
Block Circ. (D = 7d)
Block Circ. (D = 15d)
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signal
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Fourier-like)
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Robustness
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• Random measurements
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Discussion

(+)

• Well-conditioned deterministic measurement matrices with
explicit condition number bounds

• Significantly faster (FFT time) than comparable SDP-based
methods

(-)

• Requires 2× to 4× more measurements than equivalent
SDP-based methods
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The Sparse Phase Retrieval Problem

find x ∈ Cd given |Mx| = b ∈ RD,

where

• x is k-sparse, with k � d.

• b ∈ RD are the magnitude or intensity measurements.

• M∈ CD×d is a measurement matrix associated with these
measurements.

Let A : RD → Cd denote the recovery method.

The sparse phase retrieval problem involves designing measurement
matrix and recovery method pairs.
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Sparse Phase Retrieval – Objectives

• Computational Efficiency

• Computational Robustness: The recovery algorithm, A,
should be robust to additive measurement errors (i.e., noise).

• Minimal Measurements: The number of linear measurements,
D, should be minimized to the greatest extent possible. In
particular, can we have robust reconstruction for
D = O(k log(d/k)) measurements?
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Recall – Alternating Projection Methods
[Gerchberg and Saxton, 1972] and [Fienup, 1978]

Algorithm 1 Gerchberg–Saxton

Input: Measurements b = |Mx| ∈ RD, Initial estimate x0 ∈ Cd.
1: for i = 0 to N − 1 do
2: Compute y = Mxi
3: Set ỹ = b ∠y
4: Compute xi+1 = M †ỹ
5: end for

• N is the number of iterations

• M † is the Moore-Penrose pseudo-inverse
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Alternating Projections with Sparsity Constraints
[Mukherjee and Seelamantula, 2012]

• Assume sparsity in some basis.

• Introduce a thresholding step where you retain only k
coefficients of x in this basis representation.

• Similar performance as with Gerchberg–Saxton.
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Recall – PhaseLift [Candes et. al., 2012]

• Let wm be a mask. The measurements may be written as

|〈wm,x〉|2 = Tr(x∗wm(wm)∗x) = Tr(wm(wm)∗xx∗)

:= Tr(WmX).

• Let W be the linear operator mapping positive semidefinite
matrices into {Tr(WmX) : k = 0, . . . , L}.

• Instead, use the convex relaxation

minimize trace(X)

subject to
W(X) = b
X � 0

• Implemented using a semidefinite program (SDP).
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Extensions to Sparse Signals [Ohlsson et. al., 2012]

Compressive Phase Retrieval via Lifting (CPRL)

minimize trace(X) + λ||X||1

subject to
W(X) = b
X � 0.

• λ is a regularization parameter.

• Can be shown [Moravec et. al., 2007] that x can be uniquely
recovered if d = O

(
k2 log(4D/k2)

)
.
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Other Methods

• GrEedy Sparse PhAse Retrieval (GESPAR) algorithm
[Shechtman et. al. 2014]

• Fast 2-opt local search applied to sparsity constrained
non-linear optimization

• Works with magnitude measurements of any linear transform
(including Fourier)

• No theoretical error guarantees
• No. of required measurements scales as k3

• Compressive Phase Retrieval via Generalized Approximate
Message Passing [Schniter, Rangan 2014]

• Probabilistic, graph-based message passing techniques
• Only numerical study; no theoretical error guarantees
• No. of measurements required: D ≥ 2k log2(N/k)
• Efficient implementation
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Computational Framework

Let the measurement matrix M be of the form

M = PC,

where

• P ∈ CD×d̃ is an admissible phase retrieval matrix, and

• C ∈ Cd̃×d is an admissible compressive sensing matrix.

Note: We typically have D = O(d̃) and d̃ = O (k log(d/k)), where
k is the sparsity of x.
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Computational Framework

1 Solve a (non-sparse) phase retrieval problem

minimize trace(Y )

subject to
W(Y ) = b
Y � 0,

where Y = yy∗ and y ∈ Cd̃ is an intermediate solution.

2 Recover x using a compressive sensing formulation

minimize ||x||1
subject to Cx = b.
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Advantages

• Dramatically reduces the problem dimension.

• In CPRL, the single SDP is in d2 variables, with D equality
constraints.

• In the 2-stage formulation, the first SDP is in
d̃2 = O(k2 log2 d) variables, with D equality constraints. The
second optimization program is much simpler (LP).

• Recovery guarantees follow naturally from guarantees for the
Phase Retrieval method employed and Compressive Sensing

• Not limited to Phase Lift – Can work with any phase retrieval
method (Step 1)
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Error Guarantee

• Consider noisy measurements of the form

b := |PCx|2 + n

• P ∈ CD×d̃ is any phase retrieval matrix with an associated
recovery algorithm ΦP : RD → Cd̃ (and error guarantee)

• C ∈ Cd̃×d is any compressive sensing matrix with an
associated recovery algorithm ∆C : Cd̃ → Cd (and error
guarantee)

• Composition of the two recovery algorithms,
∆C ◦ ΦP : RD → Cd, should accurately approximate x ∈ Cd,
up to a global phase factor, from b whenever x is sufficiently
sparse or compressible.
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Error Guarantee

Theorem (PhaseLift: Candes, Li 2014)

Let P ∈ CD×d̃ have its D rows be independently drawn either

uniformly at random from the sphere of radius
√
d̃ in Cd̃, or else as

complex normal random vectors from N (0, Id̃/2) + iN (0, Id̃/2).

Then, ∃ universal constants B̃, C̃, Ã ∈ R+ such that the PhaseLift
procedure ΦP : RD → Cd̃ satisfies

min
θ∈[0,2π]

∥∥∥ ΦP (b)− eiθx
∥∥∥
2
≤ C̃ ·min

(
‖x‖2,

‖n‖1
D‖x‖2

)
for all x ∈ Cd̃ with probability 1−O(e−B̃D), provided that
D ≥ Ãd̃.
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Error Guarantee

Theorem (from Foucart, Rauhut Theorem 4.22)

Suppose that the matrix C ∈ Cd̃×d satisfies the `2-robust null
space property of order k with constants 0 < ρ < 1 and τ > 0.
Then, for any x ∈ Cd, the vector

x̃ := arg min
z∈Cd

‖z‖1 subject to ‖Cz− y‖2 ≤ η,

where y := Cx + e for some e ∈ Cd̃ with ‖e‖2 ≤ η, will satisfy

‖x− x̃‖2 ≤
C√
k
·
(

inf
z∈Cd,‖z‖0≤k

‖x− z‖1
)

+Aη

for some constants C,A ∈ R+ that only depend on ρ and τ .
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Error Guarantee

Theorem (Iwen, V., Wang 2014)

Let P ∈ CD×d̃ have its D rows be independently drawn either

uniformly at random from the sphere of radius
√
d̃ in Cd̃, or else

as complex normal random vectors from CN (0, Id̃).

Furthermore, suppose that C ∈ Cd̃×d satisfies the `2-robust null
space property of order k with constants 0 < ρ < 1 and τ > 0.
Then,

min
θ∈[0,2π]

∥∥∥eiθx−∆C (ΦP (b))
∥∥∥
2
≤ C√

k
·
(

inf
z∈Cd,‖z‖0≤k

‖x− z‖1
)

+

A ·min

(
‖Cx‖2,

‖n‖1
D‖Cx‖2

)
holds for all x ∈ Cd with probability 1−O(e−BD), provided that
D ≥ E · d̃. Here B,E ∈ R+ are universal constants, while
C,A ∈ R+ are constants that only depend on ρ and τ .
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Error Guarantee

When C is a random matrix with i.i.d. subGaussian random
entries, we can further show that

min
θ∈[0,2π]

∥∥∥eiθx−∆C (ΦP (b))
∥∥∥
2
≤ C√

k
·
(

inf
z∈Cd,‖z‖0≤k

‖x− z‖1
)

+A‖n‖2

32 / 41



Numerical Results

• Test signals – sparse, unit-norm complex vectors
• non-zero indices are independently and randomly chosen
• non-zero entries are i.i.d. standard complex Gaussians

• Noise model – i.i.d. zero-mean additive Gaussian noise at
different SNRs

• Errors reported as SNR (dB)

Error (dB) = 10 log10

(
‖x̂− x‖22
‖x‖22

)
(x̂ – recovered signal, x – true signal)
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Robustness
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Robustness to Additive Noise: N = 1024, s = 5, m̃ = 371

• Signal size: d = 1024

• Sparsity: k = 5

• 371 measurements (14k log(d/k))
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No. of measurements – Comparison with SDP-based CPRL
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Corresponding Runtime
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Discussion

(+)

• Requires O(k log(d/k)) measurements.

• Significantly faster than comparable (SDP-based) methods.

• Recovery guarantee

(-)

• May require more (a small linear factor) measurements for
small problems.
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Summary

• Robust, efficient (FFT-time) phase retrieval algorithm

• Uses compactly supported masks and a block circulant
construction in conjunction with angular synchronization

• Deterministic, well conditioned measurements masks

• Simple 2-stage method for sparse signals
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Software Repository
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