Phase Retrieval from Local Measurements: Deterministic Measurement Constructions and Efficient Recovery Algorithms

> Aditya Viswanathan adityavv@umich.edu www-personal.umich.edu/~adityavv

UNIVERSITY OF MICHIGAN-DEARBORN

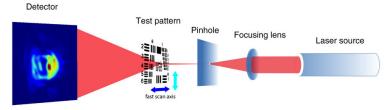
2017 SIAM Pacific Northwest Regional Conference, Corvallis, OR Oct. 28, 2017

#### Collaborators



Research supported in part by NSF grant DMS-1416752

# Motivating Application



From Huang, Xiaojing, et al. "Fly-scan ptychography." Scientific Reports 5 (2015).

The Phase Retrieval problem arises in many molecular imaging modalities, including

- X-ray crystallography
- Ptychography

Other applications can be found in optics, astronomy and speech processing.

### Mathematical Model

find<sup>1</sup> 
$$\mathbf{x} \in \mathbb{C}^d$$
 given  $y_i = |\langle \mathbf{a}_i, \mathbf{x} \rangle|^2 + \eta_i$   $i \in 1, \dots, D$ ,

where

- $y_i \in \mathbb{R}$  denotes the phaseless (or magnitude-only) measurements (D measurements acquired),
- $\mathbf{a}_i \in \mathbb{C}^d$  are known (by design or estimation) measurement vectors, and
- $\eta_i \in \mathbb{R}$  is measurement noise.

<sup>&</sup>lt;sup>1</sup>(upto a global phase offset)

## Existing Computational Approaches

- Alternating projection methods [Fienup, 1978], [Marchesini et al., 2006], [Fannjiang, Liao, 2012] and many others...
- Methods based on semidefinite programming PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al., 2012], ...
- Others
  - Frame-theoretic, graph based algorithms [Alexeev et al., 2014]
  - (Stochastic) gradient descent (Wirtinger Flow) [Candes et al., 2014]

Most methods (with provable recovery guarantees) require impractical (global, random) measurement constructions.

## Today...

- We discuss a recently introduced fast (essentially linear-time) phase retrieval algorithm based on realistic (deterministic)<sup>2</sup> local measurement constructions.
- We provide rigorous theoretical recovery guarantees and present numerical results showing the accuracy, efficiency and robustness of the method.
- (*Time Permitting*) extensions to 2D and compressive phase retrieval.

<sup>&</sup>lt;sup>2</sup> for a large class of real-world signals

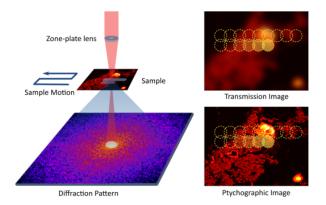
### Outline

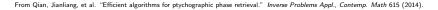
1 Introduction

 Solving the Phase Retrieval Problem Measurement Constructions Structured Lifting – Obtaining Phase Difference Information Angular Synchronization – Solving for the Individual Phases

3 Theoretical Guarantees

- 4 Numerical Simulations
- 5 Extensions





Each  $\mathbf{a}_i$  is a **shift** of a **locally-supported** vector (*mask or window*)  $\mathbf{m}^{(j)} \in \mathbb{C}^d$ ,  $\operatorname{supp}(\mathbf{m}^{(j)}) = [\delta] \subset [d], \quad j = 1, \dots, K$ 

Each  $\mathbf{a}_i$  is a shift of a locally-supported vector (mask or window)  $\mathbf{m}^{(j)} \in \mathbb{C}^d$ ,  $\operatorname{supp}(\mathbf{m}^{(j)}) = [\delta] \subset [d], \quad j = 1, \dots, K$ 

Define the discrete circular shift operator

 $S_{\ell}: \mathbb{C}^d \to \mathbb{C}^d$  with  $(S_{\ell}\mathbf{x})_j = x_{\ell+j}$ .

Our measurements are then

 $(\mathbf{y}_{\ell})_{j} = |\langle \mathbf{x}, S_{\ell}^{*} \mathbf{m}^{(j)} \rangle|^{2} + \eta_{j,\ell}, \quad (j,\ell) \in [K] \times P, \ P \subset \{0, ..., d-1\}$ 

We will consider  $K \approx \delta$  and  $P = [d]_0 := \{0, ..., d-1\}$ 

Each  $\mathbf{a}_i$  is a shift of a locally-supported vector (mask or window)  $\mathbf{m}^{(j)} \in \mathbb{C}^d$ ,  $\operatorname{supp}(\mathbf{m}^{(j)}) = [\delta] \subset [d], \quad j = 1, \dots, K$ 

Define the discrete circular shift operator

 $S_{\ell}: \mathbb{C}^d \to \mathbb{C}^d$  with  $(S_{\ell}\mathbf{x})_j = x_{\ell+j}$ .

Our measurements are then

 $(\mathbf{y}_{\ell})_{j} = |\langle \mathbf{x}, S_{\ell}^{*} \mathbf{m}^{(j)} \rangle|^{2} + \eta_{j,\ell}, \quad (j,\ell) \in [K] \times P, \ P \subset \{0, ..., d-1\}$ 

We will consider  $K \approx \delta$  and  $P = [d]_0 := \{0, ..., d-1\}$ 

Each  $\mathbf{a}_i$  is a **shift** of a **locally-supported** vector (*mask or window*)  $\mathbf{m}^{(j)} \in \mathbb{C}^d$ ,  $\operatorname{supp}(\mathbf{m}^{(j)}) = [\delta] \subset [d], \quad j = 1, \dots, K$ 

Define the discrete circular shift operator

$$S_{\ell}: \mathbb{C}^d \to \mathbb{C}^d \quad \text{with} \quad (S_{\ell}\mathbf{x})_j = x_{\ell+j}.$$

Our measurements are then

 $(\mathbf{y}_{\ell})_{j} = |\langle \mathbf{x}, S_{\ell}^{*} \mathbf{m}^{(j)} \rangle|^{2} + \eta_{j,\ell}, \quad (j,\ell) \in [K] \times P, \ P \subset \{0, ..., d-1\}$ 

We will consider  $K \approx \delta$  and  $P = [d]_0 := \{0, ..., d-1\}$ 

Each  $\mathbf{a}_i$  is a **shift** of a **locally-supported** vector (*mask or window*)  $\mathbf{m}^{(j)} \in \mathbb{C}^d$ ,  $\operatorname{supp}(\mathbf{m}^{(j)}) = [\delta] \subset [d], \quad j = 1, \dots, K$ 

Define the discrete circular shift operator

$$S_{\ell}: \mathbb{C}^d \to \mathbb{C}^d$$
 with  $(S_{\ell}\mathbf{x})_j = x_{\ell+j}$ .

Our measurements are then

 $(\mathbf{y}_{\ell})_{j} = |\langle \mathbf{x}, S_{\ell}^{*} \mathbf{m}^{(j)} \rangle|^{2} + \eta_{j,\ell}, \quad (j,\ell) \in [K] \times P, \quad P \subset \{0, ..., d-1\}$ 

We will consider  $K \approx \delta$  and  $P = [d]_0 := \{0, ..., d - 1\}$ 

 $\text{Lifted System:} \qquad |\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} {\mathbf{m}^{(j)}}^* S_{\ell} \rangle.$ 

 $\text{Lifted System:} \qquad |\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} {\mathbf{m}^{(j)}}^* S_{\ell} \rangle.$ 

 $\text{Lifted System:} \qquad |\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} {\mathbf{m}^{(j)}}^* S_{\ell} \rangle.$ 

 $\text{Lifted System:} \qquad |\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} {\mathbf{m}^{(j)}}^* S_{\ell} \rangle.$ 

 $\text{Lifted System:} \qquad |\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} {\mathbf{m}^{(j)}}^* S_{\ell} \rangle.$ 

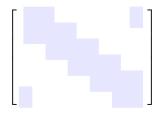
 $\text{Lifted System:} \qquad |\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} {\mathbf{m}^{(j)}}^* S_{\ell} \rangle.$ 

$$|\langle \mathbf{x}\mathbf{x}^*, S_5^* \mathbf{m}^{(j)} \mathbf{m}^{(j)*} S_5 \rangle| = \left\langle \mathbf{x}\mathbf{x}^*, \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \right\rangle$$

Lifted System:  $|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle \mathbf{x} \mathbf{x}^*, S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)*} S_{\ell} \rangle.$ 

Example:  $(6 \times 6 \text{ system}, \delta = 2, \text{ blue denotes non-zero entries})$ 

Observation: The only entries of  $\mathbf{x}\mathbf{x}^*$  we can hope to recover (via linear inversion) are supported on a (circulant) band



# Useful Observations (I)

 $T_{\delta}(\mathbb{C}^{d \times d}): \quad \text{Let} \qquad T_k: \mathbb{C}^{d \times d} \to \mathbb{C}^{d \times d}$  $T_k(A)_{ij} = \begin{cases} A_{ij}, & |i-j| \mod d < k \\ 0, & \text{otherwise.} \end{cases}$ 

Lifted System Revisited:  $|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle T_{\delta}(\mathbf{x}\mathbf{x}^*), S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)*} S_{\ell} \rangle.$ 

Bottom Line: If we can find  $\mathbf{m}^{(j)}$  such that

Span  $\left\{S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)*} S_{\ell}\right\}_{\ell,j} = T_{\delta}(\mathbb{C}^{d \times d}),$ 

then we can recover  $T_{\delta}(\mathbf{xx}^*)$ .

# Useful Observations (I)

 $T_{\delta}(\mathbb{C}^{d \times d}): \quad \text{Let} \qquad T_k: \mathbb{C}^{d \times d} \to \mathbb{C}^{d \times d}$  $T_k(A)_{ij} = \begin{cases} A_{ij}, & |i-j| \mod d < k \\ 0, & \text{otherwise.} \end{cases}$ 

Lifted System Revisited:  $|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle T_{\delta}(\mathbf{x}\mathbf{x}^*), S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)*} S_{\ell} \rangle.$ 

Bottom Line: If we can find  $\mathbf{m}^{(j)}$  such that

Span  $\left\{S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)*} S_{\ell}\right\}_{\ell,j} = T_{\delta}(\mathbb{C}^{d \times d}),$ 

then we can recover  $T_{\delta}(\mathbf{xx}^*)$ .

# Useful Observations (I)

 $T_{\delta}(\mathbb{C}^{d \times d}): \quad \text{Let} \qquad T_k: \mathbb{C}^{d \times d} \to \mathbb{C}^{d \times d}$  $T_k(A)_{ij} = \begin{cases} A_{ij}, & |i-j| \mod d < k \\ 0, & \text{otherwise.} \end{cases}$ 

Lifted System Revisited:  $|\langle \mathbf{x}, S_{\ell}^* \mathbf{m}^{(j)} \rangle|^2 = \langle T_{\delta}(\mathbf{x}\mathbf{x}^*), S_{\ell}^* \mathbf{m}^{(j)} \mathbf{m}^{(j)*} S_{\ell} \rangle.$ 

Bottom Line: If we can find  $\mathbf{m}^{(j)}$  such that

 $\operatorname{Span}\left\{S_{\ell}^{*}\mathbf{m}^{(j)}\mathbf{m}^{(j)*}S_{\ell}\right\}_{\ell,j}=T_{\delta}(\mathbb{C}^{d\times d}),$ 

then we can recover  $T_{\delta}(\mathbf{x}\mathbf{x}^*)$ .

## Useful Observations (II)

Why this is useful:

(a) Diagonal entries of  $T_{\delta}(\mathbf{xx}^*)$  are  $|x_i|^2$ .

(b) Off-diagonals give the relative phases

$$\widetilde{X} := \frac{\mathbf{x}\mathbf{x}^*}{|\mathbf{x}\mathbf{x}^*|}$$
$$T_{\delta}(\widetilde{X})_{(j,k)} = e^{\mathbf{i}(\arg(x_j) - \arg(x_k))}, \quad |j - k| \mod d < \delta$$

Phase Synchronization:

(a) The leading eigenvector (appropriately normalized) of

$$T_{\delta}(\widetilde{X}) = \operatorname{diag}\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) \ T_{\delta}(\mathbb{1}\mathbb{1}^{*}) \operatorname{diag}\left(\frac{\mathbf{x}^{*}}{|\mathbf{x}|}\right)$$
$$= \operatorname{diag}\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) \ F\Lambda F^{*} \operatorname{diag}\left(\frac{\mathbf{x}^{*}}{|\mathbf{x}|}\right)$$

is the vector of phases of  $\mathbf{x}$ .

<u>Note</u>:  $\frac{\mathbf{x}}{|\mathbf{x}|} = [e^{i\phi_1} e^{i\phi_2} \dots e^{i\phi_d}]^T$  is the (unknown) phase vector  $F \in \mathbb{C}^{d \times d}$  is the discrete Fourier transform (DFT) matrix

## Useful Observations (II)

Why this is useful:

(a) Diagonal entries of  $T_{\delta}(\mathbf{xx}^*)$  are  $|x_i|^2$ .

(b) Off-diagonals give the relative phases

$$\begin{split} \widetilde{X} &:= \frac{\mathbf{x}\mathbf{x}^*}{|\mathbf{x}\mathbf{x}^*|} \\ T_{\delta}(\widetilde{X})_{(j,k)} = \mathbb{e}^{\mathrm{i}(\mathrm{arg}(x_j) - \mathrm{arg}(x_k))}, \quad |j - k| \mod d < \delta \end{split}$$

Phase Synchronization:

(a) The leading eigenvector (appropriately normalized) of

$$T_{\delta}(\widetilde{X}) = \operatorname{diag}\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) \ T_{\delta}(\mathbb{1}\mathbb{1}^{*}) \operatorname{diag}\left(\frac{\mathbf{x}^{*}}{|\mathbf{x}|}\right)$$
$$= \operatorname{diag}\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right) \ F\Lambda F^{*} \operatorname{diag}\left(\frac{\mathbf{x}^{*}}{|\mathbf{x}|}\right)$$

is the vector of phases of  $\mathbf{x}.$ 

 $\begin{array}{ll} \underline{\textit{Note}}: & \frac{\mathbf{x}}{|\mathbf{x}|} = [e^{i\phi_1} \ e^{i\phi_2} \ \dots e^{i\phi_d}]^T \text{ is the (unknown) phase vector!} \\ & F \in \mathbb{C}^{d \times d} \text{ is the discrete Fourier transform (DFT) matrix} \end{array}$ 

Define the map  $\mathcal{A}: \mathbb{C}^{d \times d} \to \mathbb{C}^D$  $\mathcal{A}(Z)_{(\ell,j)} = \langle Z, S_\ell^* m^{(j)} m^{(j)^*} S_\ell \rangle_{(\ell,j)}.$ 

and its restriction  $\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}$  to our subspace.

Define the map  $\mathcal{A}: \mathbb{C}^{d \times d} \to \mathbb{C}^D$  $\mathcal{A}(Z)_{(\ell,j)} = \langle Z, S_\ell^* m^{(j)} m^{(j)^*} S_\ell \rangle_{(\ell,j)}.$ 

and its restriction  $\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}$  to our subspace.

In the **noisy** setting:

Step 1: Estimate  $T_{\delta}(\mathbf{xx}^*)$  by the banded matrix

$$Z = T_{\delta}(Z) := \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2}\right) + \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2}\right)^{*}.$$

- Step 2: Estimate the phase by computing the leading eigenvector of  $T_{\delta}\left(\frac{Z}{|Z|}\right)$ .
- Step 3: Combine phase with  $\sqrt{\cdot}$  of diagonal entries of  $T_{\delta}(Z)$  to estimate  $\mathbf{x}$ .

Define the map  $\mathcal{A}: \mathbb{C}^{d \times d} \to \mathbb{C}^D$  $\mathcal{A}(Z)_{(\ell,j)} = \langle Z, S_\ell^* m^{(j)} m^{(j)^*} S_\ell \rangle_{(\ell,j)}.$ 

and its restriction  $\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}$  to our subspace.

In the **noisy** setting:

Step 1: Estimate  $T_{\delta}(\mathbf{xx}^*)$  by the banded matrix

$$Z = T_{\delta}(Z) := \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2}\right) + \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2}\right)^{*}.$$

- Step 2: Estimate the phase by computing the leading eigenvector of  $T_{\delta}\left(\frac{Z}{|Z|}\right)$ .
- Step 3: Combine phase with  $\sqrt{\cdot}$  of diagonal entries of  $T_{\delta}(Z)$  to estimate  $\mathbf{x}$ .

Define the map  $\mathcal{A}: \mathbb{C}^{d \times d} \to \mathbb{C}^D$  $\mathcal{A}(Z)_{(\ell,j)} = \langle Z, S_\ell^* m^{(j)} m^{(j)^*} S_\ell \rangle_{(\ell,j)}.$ 

and its restriction  $\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}$  to our subspace.

In the **noisy** setting:

Step 1: Estimate  $T_{\delta}(\mathbf{xx}^*)$  by the banded matrix

$$Z = T_{\delta}(Z) := \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2}\right) + \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2}\right)^{*}.$$

- Step 2: Estimate the phase by computing the leading eigenvector of  $T_{\delta}\left(\frac{Z}{|Z|}\right)$ .
- Step 3: Combine phase with  $\sqrt{\cdot}$  of diagonal entries of  $T_{\delta}(Z)$  to estimate  $\mathbf{x}$ .

Define the map  $\mathcal{A} : \mathbb{C}^{d \times d} \to \mathbb{C}^D$  $\mathcal{A}(Z)_{(\ell,j)} = \langle Z, S_\ell^* m^{(j)} m^{(j)^*} S_\ell \rangle_{(\ell,j)}.$ 

and its restriction  $\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}$  to our subspace.

In the **noisy** setting:

- Step 1: Estimate  $T_{\delta}(\mathbf{x}\mathbf{x}^*)$  by <u>*Cost*</u>:  $\mathcal{O}(d \cdot \delta^3 + \delta \cdot d \log d)$  flops  $Z = T_{\delta}(Z) := \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2}\right) + \left(\mathcal{A}|_{T_{\delta}(\mathbb{C}^{d \times d})}^{-1} \frac{y}{2}\right)^*.$
- Step 2: Estimate the phase by computing the leading eigenvector of  $T_{\delta}\left(\frac{Z}{|Z|}\right)$ . <u>*Cost*</u>:  $\mathcal{O}(\delta^2 \cdot d \log d)$  flops
- Step 3: Combine phase with  $\sqrt{\cdot}$  of diagonal entries of  $T_{\delta}(Z)$  to estimate **x**. <u>Total Cost</u>:  $\mathcal{O}(\delta^2 \cdot d \log d + d \cdot \delta^3)$  flops

### Outline

1 Introduction

 Solving the Phase Retrieval Problem Measurement Constructions Structured Lifting – Obtaining Phase Difference Information Angular Synchronization – Solving for the Individual Phases

#### 3 Theoretical Guarantees

- 4 Numerical Simulations
- 5 Extensions

## Well-Conditioned Linear Systems

#### Theorem (Iwen, V., Wang 2015)

Choose entries of the measurement mask  $(\mathbf{m}^{(i)})$  as follows:

$$(\mathbf{m}^{(i)})_{\ell} = \begin{cases} \frac{\mathrm{e}^{-\ell/a}}{\sqrt[4]{2\delta-1}} \cdot \mathrm{e}^{\frac{2\pi\mathrm{i}\cdot\mathrm{i}\cdot\ell}{2\delta-1}}, & \ell \leq \delta\\ 0, & \ell > \delta \end{cases}, \qquad a := \max\left\{4, \frac{\delta-1}{2}\right\},\\ i = 1, 2, \dots, N. \end{cases}$$

Then, the resulting system matrix for the phase differences (step 1),  $\mathcal{A}|_{T_{\delta}}$ , has condition number

$$\kappa(\mathcal{A}|_{T_{\delta}}) < \max\left\{144e^{2}, \frac{9e^{2}}{4} \cdot (\delta - 1)^{2}\right\}.$$

- Deterministic (windowed DFT-type) measurement masks!
- $\delta$  is typically chosen to be  $c \log_2 d$  with c small (2–3).
- Extensions: oversampling, random masks ....

## Recovery Guarantee

Theorem (Iwen, Preskitt, Saab, V. 2016)

Let  $x_{\min} := \min_j |x_j|$  be the smallest magnitude of any entry in x. Then, the estimate z produced by the proposed algorithm satisfies

$$\min_{\boldsymbol{\theta} \in [0,2\pi]} \left\| \mathbf{x} - e^{\mathbf{i}\boldsymbol{\theta}} \mathbf{z} \right\|_2 \le C \left( \frac{\|\mathbf{x}\|_{\infty}}{x_{\min}^2} \right) \left( \frac{d}{\delta} \right)^2 \kappa \|\boldsymbol{\eta}\|_2 + C d^{\frac{1}{4}} \sqrt{\kappa \|\boldsymbol{\eta}\|_2},$$

where  $C \in \mathbb{R}^+$  is an absolute universal constant.

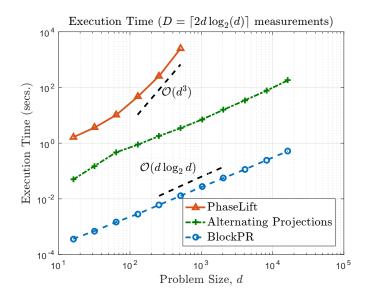
- This result yields a *deterministic* recovery result for any signal **x** which contains no zero entries.
- A randomized result can be derived for arbitrary x by right multiplying the signal x with a random "flattening" matrix. (this is also useful for performing *sparse* phase retrieval!)

### Outline

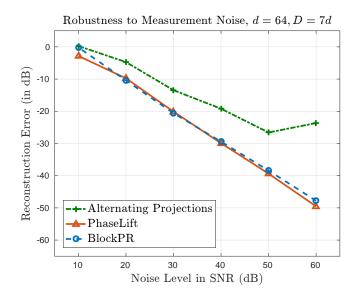
1 Introduction

- Solving the Phase Retrieval Problem Measurement Constructions Structured Lifting – Obtaining Phase Difference Information Angular Synchronization – Solving for the Individual Phases
- 3 Theoretical Guarantees
- 4 Numerical Simulations
- 5 Extensions

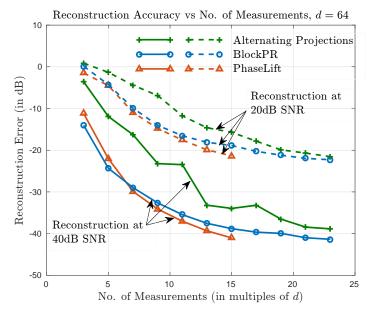
#### Efficiency - FFT-time phase retrieval



#### Robustness to Measurement Errors



#### Reconstruction Error vs. No. of Measurements



# Summary and Current/Future Research Directions

#### Today

- Phase retrieval is an immensely challenging problem seen in important applications such as x-ray crystallography.
- Proposed mathematical framework: Essentially linear-time robust phase retrieval from deterministic local correlation measurement constructions with rigorous **recovery guarantee**.

#### Current and Future Directions

- More robust measurement constructions
- Compressive phase retrieval
- Extensions to 2D and Ptychographic datasets
- Continuous problem formulation

## Outline

1 Introduction

- Solving the Phase Retrieval Problem Measurement Constructions Structured Lifting – Obtaining Phase Difference Information Angular Synchronization – Solving for the Individual Phases
- 3 Theoretical Guarantees
- 4 Numerical Simulations

#### 5 Extensions

### Extension - 2D Phase Retrieval

- Preliminary results for 2D masks with tensor product structure
- Results from 1D extend to 2D; 2D linear system is a tensor product of the 1D linear system (up to row permutations)
- Eigenvector-based phase synchronization also works calculation of spectral gap and error analysis pending



Test Image ( $256 \times 256$  pixels)



Recon. (Rel. error  $2.857 \times 10^{-16}$ )

#### Extension - Compressive Phase Retrieval

 $\begin{array}{ll} \underline{\mathsf{Model}} & \mathsf{find} \quad \mathbf{x} \in \mathbb{C}^d \quad \mathsf{given} \quad \left|\mathcal{M}\mathbf{x}\right|^2 + \mathbf{n} = \mathbf{y} \in \mathbb{R}^D \\ & \mathsf{where} \; \mathbf{x} \; \mathsf{is} \; k\mathsf{-sparse}, \; \mathsf{with} \; k \ll d, \\ & |\cdot| \; \mathsf{is} \; \mathsf{entry-wise} \; \mathsf{absolute} \; \mathsf{value}, \; \mathsf{and} \\ & \mathcal{M} \; \mathsf{is} \; \mathsf{a} \; \mathsf{measurement} \; \mathsf{matrix}. \end{array}$ 

Measurement Design Assume  $\mathcal{M}=\mathcal{PC}$  where

 $\mathcal{P} \in \mathbb{C}^{D \times \tilde{d}}$  is an admissible phase retrieval matrix with an associated recovery algorithm  $\Phi_{\mathcal{P}} : \mathbb{R}^D \to \mathbb{C}^{\tilde{d}}$ , and  $\mathcal{C} \in \mathbb{C}^{\tilde{d} \times d}$  is an admissible compressive sensing matrix with an

associated recovery algorithm  $\Delta_{\mathcal{C}}: \mathbb{C}^{\tilde{d}} \to \mathbb{C}^{d}$ .

Recovery Algorithm (Two-stage)  $\Delta_{\mathcal{C}} \circ \Phi_{\mathcal{P}} : \mathbb{R}^D \to \mathbb{C}^d$ 

 $\frac{\text{Performance Metrics}}{\text{Computational cost (sub-linear) is } \mathcal{O}(k \ln(d/k))}$ 

Pubs./Preprints/Code (see www-personal.umich.edu/~adityavv)

M. Iwen, B. Preskitt, R. Saab and A. Viswanathan. "Phase Retrieval from Local Measurements: Improved Robustness via Eigenvector-Based Angular Synchronization." arXiv:1612.01182, 2016.

M. Iwen, A. Viswanathan, and Y. Wang. "Fast Phase Retrieval from Local Correlation Measurements." SIAM J. Imag. Sci., Vol. 9(4), pp. 1655–1688, Oct. 2016.

#### Compressive Phase Retrieval

M. Iwen, A. Viswanathan, and Y. Wang. "Robust Sparse Phase Retrieval Made Easy." Appl. Comput. Harmon. Anal., Vol. 42(1), pp. 135–142, Jan. 2017.

#### 2D Phase Retrieval

Mark Iwen, Brian Preskitt, Rayan Saab and A. Viswanathan. "Phase Retrieval from Local Measurements in Two Dimensions.", Proc. SPIE 10394, Wavelets and Sparsity XVII, 103940X, Aug. 2017.

<u>Code</u> https://bitbucket.org/charms/{blockpr,sparsepr}

## Questions?

