Fast Robust Phase Retrieval from Local Correlation Measurements

Aditya Viswanathan
aditya@math.msu.edu www.math.msu.edu/~aditya

MICHIGAN STATE

U N I V E R S I T Y

SIAM Conference on Imaging Science (IS16)
Albuquerque, New Mexico
May 24, 2016

Joint work with

Mark Iwen

Yang Wang

New Collaborators: Rayan Saab and Brian Preskitt (UCSD)
Research supported in part by National Science Foundation grant DMS 1043034.

The Phase Retrieval Problem

$$
\text { find }^{1} \quad \mathbf{x} \in \mathbb{C}^{d} \text { given }|M \mathbf{x}|^{2}+\mathbf{n}=\mathbf{b} \in \mathbb{R}^{D},
$$

where

- $\mathbf{b} \in \mathbb{R}^{D}$ denotes the phaseless (or magnitude-only) measurements,
- $M \in \mathbb{C}^{D \times d}$ is a measurement matrix associated with these measurements, and
- $\mathbf{n} \in \mathbb{R}^{D}$ is measurement noise.

Let $\mathcal{A}: \mathbb{R}^{D} \rightarrow \mathbb{C}^{d}$ denote the recovery method. The phase retrieval problem involves designing measurement matrix and recovery method pairs, (M, \mathcal{A}).

[^0]
Motivating Applications

Detector

From Huang, Xiaojing, et al. "Fly-scan ptychography." Scientific Reports 5 (2015).
The Phase Retrieval problem arises in many molecular imaging modalities, including

- X-ray crystallography
- Ptychography

Other applications can be found in optics, astronomy and speech processing.

Existing Computational Approaches

- Alternating projection methods
[Fienup, 1978], [Fannjiang and Liao, 2012], ...
- Methods based on semidefinite programming PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al., 2012], ...
- Others
- Frame-theoretic, graph based algorithms [Alexeev et al., 2014]
- (Stochastic) gradient descent [Candes et al., 2014]
... and variants for sparse and/or structured signal models.

Existing Computational Approaches

- Alternating projection methods - No recovery guarantees [Fienup, 1978], [Fannjiang and Liao, 2012], ...
- Methods based on semidefinite programming - Expensive PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al., 2012], ...
- Others
- Frame-theoretic, graph based algorithms [Alexeev et al., 2014]
- (Stochastic) gradient descent [Candes et al., 2014]

Most methods require random measurement constructions.

Today. . .

- We discuss a recently introduced essentially linear-time phase retrieval algorithm based on (deterministic ${ }^{2}$) local correlation measurement constructions.
- We provide rigorous theoretical recovery guarantees and present numerical results showing the accuracy, efficiency and robustness of the method.

[^1]
Outline

1 The Phase Retrieval Problem

2 BlockPR: Fast Phase Retrieval from Local Correlation Measurements

Measurement Constructions
Solving for Phase Differences
Angular Synchronization

3 Theoretical Guarantees

4 Numerical Simulations

Key Components

(1) Local Measurements: Each measurement provides information about some local region of \mathbf{x}.

2 Local Lifting: Use compactly supported masks and correlation measurements to obtain phase difference estimates.

3 Angular Synchronization: Use the phase differences to obtain the phases of the unknown signal.

Constraint on \mathbf{x} : We require \mathbf{x} to be "flat". (At most δ consecutive entries in \mathbf{x} with magnitude $<\frac{\|\mathbf{x}\|_{2}}{2 \sqrt{d}}$)

Key Components

(1) Local Measurements: Each measurement provides information about some local region of \mathbf{x}.

2 Local Lifting: Use compactly supported masks and correlation measurements to obtain phase difference estimates.

$$
\left|\operatorname{Corr}\left(\mathbf{m}_{i}, \mathbf{x}\right)\right|^{2} \xrightarrow[\text { linear system }]{\text { solve }}\left\{x_{j} x_{k}^{*}\right\}_{\mid j-k} \bmod d<\delta \mid
$$

- \mathbf{m}_{i} is a mask or window function with δ non-zero entries.
- $x_{j} x_{k}^{*}$ provides (scaled) phase difference between x_{j} and x_{k}.

3 Angular Synchronization: Use the phase differences to obtain the phases of the unknown signal.
angular
synchronization
Constraint on \mathbf{x} : We require \mathbf{x} to be "flat". (At most δ consecutive entries in \mathbf{x} with magnitude $<\frac{\|\mathbf{x}\|_{2}}{2 \sqrt{d}}$)

Key Components

(1) Local Measurements: Each measurement provides information about some local region of \mathbf{x}.

2 Local Lifting: Use compactly supported masks and correlation measurements to obtain phase difference estimates.

$$
\left|\operatorname{Corr}\left(\mathbf{m}_{i}, \mathbf{x}\right)\right|^{2} \xrightarrow[\text { linear system }]{\text { solve }}\left\{x_{j} x_{k}^{*}\right\}_{\mid j-k} \bmod d<\delta \mid
$$

- \mathbf{m}_{i} is a mask or window function with δ non-zero entries.
- $x_{j} x_{k}^{*}$ provides (scaled) phase difference between x_{j} and x_{k}.
(3) Angular Synchronization: Use the phase differences to obtain the phases of the unknown signal.

$$
\left\{x_{j} x_{k}^{*}\right\}_{\mid j-k} \quad \bmod d<\delta \left\lvert\, \frac{\text { angular }}{\text { synchronization }}\left\{x_{j}\right\}_{j=1}^{d}\right.
$$

Constraint on \mathbf{x} : We require \mathbf{x} to be "flat". (At most δ consecutive entries in \mathbf{x} with magnitude $<\frac{\|\mathbf{x}\|_{2}}{2 \sqrt{d}}$)

Measurement Constructions

Adapted from Huang et al. "Fly-scan ptychography." Scientific Reports 5 (2015).

- We consider measurements motivated by Ptychographic molecular imaging.
- Measurements are local; the full reconstruction is obtained by imaging shifts of the specimen.

Model Problem

Recover an unknown vector $\mathrm{x} \in \mathbb{C}^{4}$ from noiseless measurements

$$
\mathbf{y}=|M \mathbf{x}|^{2},
$$

where $\mathbf{y} \in \mathbb{R}^{12}$ and $M \in \mathbb{C}^{12 \times 4}$ has the following structure:

$$
M=\left[\begin{array}{l}
M_{1} \\
M_{2} \\
M_{3}
\end{array}\right], \quad M_{i}=\left[\begin{array}{cccc}
\left(\mathbf{m}_{i}\right)_{1} & \left(\mathbf{m}_{i}\right)_{2} & 0 & 0 \\
0 & \left(\mathbf{m}_{i}\right)_{1} & \left(\mathbf{m}_{i}\right)_{2} & 0 \\
0 & 0 & \left(\mathbf{m}_{i}\right)_{1} & \left(\mathbf{m}_{i}\right)_{2} \\
\left(\mathbf{m}_{i}\right)_{2} & 0 & 0 & \left(\mathbf{m}_{i}\right)_{1}
\end{array}\right] .
$$

Here, $\mathbf{m}_{\{1,2,3\}} \in \mathbb{C}^{4}$ are masks with local support (with $\delta=2$ non-zero entries).

Local Correlation Measurements

These correspond to local correlation measurements

$$
\begin{aligned}
\left(\mathbf{y}_{\ell}\right)_{i} & =\left|\sum_{k=1}^{\delta=2}\left(\mathbf{m}_{\ell}\right)_{k} \cdot x_{i+k-1}\right|^{2}, \quad(\ell, i) \in\{1,2,3\} \times\{1,2,3,4\} \\
& =\sum_{j, k=1}^{\delta}\left(\mathbf{m}_{\ell}\right)_{j}\left(\mathbf{m}_{\ell}\right)_{k}^{*} x_{i+j-1} x_{i+k-1}^{*}:=\sum_{j, k=1}^{\delta}\left(\mathbf{m}_{\ell}\right)_{j, k} x_{i+j-1} x_{i+k-1}^{*} .
\end{aligned}
$$

This is a linear system for the phase differences $\left\{x_{j} x_{k}^{*}\right\}$!
Note: the masks $\mathrm{m}_{\{1,2,3\}}$ (which are related to the aperture transmission function of the imaging system) are known - either by design or through calibration.

Solving for Phase Differences

Writing out the correlation sum, we obtain the linear system

$$
M^{\prime} \mathbf{z}=\widetilde{\mathbf{b}}
$$

where

$$
\begin{aligned}
& \mathbf{z}=\left[\begin{array}{llllllllll}
\left|x_{1}\right|^{2} & x_{1} x_{2}^{*} & x_{2} x_{1}^{*} & \left|x_{2}\right|^{2} & x_{2} x_{3}^{*} & x_{3} x_{2}^{*} & \left|x_{3}\right|^{2} & x_{3} x_{4}^{*} & x_{4} x_{3}^{*} & \left|x_{4}\right|^{2}
\end{array} x_{4} x_{1}^{*} \quad x_{1} x_{4}^{*}\right]^{T}, \\
& \widetilde{\mathbf{b}}=\left[\begin{array}{lllllllll}
\left(y_{1}\right)_{1} & \left(y_{2}\right)_{1} & \left(y_{3}\right)_{1} & \left(y_{1}\right)_{2} & \left(y_{2}\right)_{2} & \left(y_{3}\right)_{2} & \left(y_{1}\right)_{3} & \left(y_{2}\right)_{3} & \left(y_{3}\right)_{3}
\end{array}\left(\begin{array}{lll}
\left.y_{1}\right)_{4} & \left(y_{2}\right)_{4} & \left(y_{3}\right)_{4}
\end{array}\right]^{T},\right.
\end{aligned}
$$

Back to our Example ...

$$
\left[\left|x_{1}\right|^{2} x_{1} x_{2}^{*} x_{2} x_{1}^{*}\left|x_{2}\right|^{2} x_{2} x_{3}^{*} x_{3} x_{2}^{*}\left|x_{3}\right|^{2} x_{3} x_{4}^{*} x_{4} x_{3}^{*}\left|x_{4}\right|^{2} x_{4} x_{1}^{*} x_{1} x_{4}^{*}\right]^{T}
$$

\downarrow (re-arrange)

\downarrow (angular synchronization)

Back to our Example ...

$$
\begin{aligned}
& {\left[\left|x_{1}\right|^{2} x_{1} x_{2}^{*} x_{2} x_{1}^{*}\left|x_{2}\right|^{2} x_{2} x_{3}^{*} x_{3} x_{2}^{*}\left|x_{3}\right|^{2} x_{3} x_{4}^{*} x_{4} x_{3}^{*}\left|x_{4}\right|^{2} x_{4} x_{1}^{*} x_{1} x_{4}^{*}\right]^{T}} \\
& \downarrow \text { (re-arrange) } \\
& {\left[\begin{array}{cccc}
\left|x_{1}\right|^{2} & x_{1} x_{2}^{*} & 0 & x_{1} x_{4}^{*} \\
x_{2} x_{1}^{*} & \left|x_{2}\right|^{2} & x_{2} x_{3}^{*} & -0 \\
\hdashline 0^{-} & x_{3} x_{2}^{*} & \left|x_{3}\right|^{2} & x_{3} x_{4}^{*} \\
x_{4} x_{1}^{*} & 0 & - & x_{4} x_{3}^{*} \\
\left|x_{4}\right|^{2}
\end{array}\right](2 \delta-1 \text { entries in band })}
\end{aligned}
$$

Back to our Example ...

$$
\begin{aligned}
& {\left[\left|x_{1}\right|^{2} x_{1} x_{2}^{*} x_{2} x_{1}^{*}\left|x_{2}\right|^{2} x_{2} x_{3}^{*} x_{3} x_{2}^{*}\left|x_{3}\right|^{2} x_{3} x_{4}^{*} x_{4} x_{3}^{*}\left|x_{4}\right|^{2} x_{4} x_{1}^{*} x_{1} x_{4}^{*}\right]^{T}} \\
& \downarrow \text { (re-arrange) } \\
& {\left[\begin{array}{cccc}
\left|x_{1}\right|^{2} & x_{1} x_{2}^{*} & -0 & x_{1} x_{4}^{*} \\
\hdashline x_{2} x_{1}^{*} & \left|x_{2}\right|^{2} & x_{2} x_{3}^{*-} & 0 \\
\hdashline 0^{-} & x_{3} x_{2}^{*} & \left|x_{3}\right|^{2} & x_{3} x_{4}^{*} \\
x_{4} x_{1}^{*} & 0^{*} & x_{4} x_{3}^{*} & \left|x_{4}\right|^{2}
\end{array}\right](2 \delta-1 \text { entries in band })} \\
& \downarrow \text { (normalize) } \\
& {\left[\begin{array}{cccc}
1 & e^{\mathrm{i}\left(\phi_{1}-\phi_{2}\right)} & 0 & e^{\mathrm{i}\left(\phi_{1}-\phi_{4}\right)} \\
e^{\mathrm{i}\left(\phi_{2}-\phi_{1}\right)} & 1 & e^{\mathrm{i}\left(\phi_{2}-\phi_{3}\right)} & 0 \\
0 & e^{\mathrm{i}\left(\phi_{3}-\phi_{2}\right)} & 1 & e^{\mathrm{i}\left(\phi_{3}-\phi_{4}\right)} \\
e^{\mathrm{i}\left(\phi_{4}-\phi_{1}\right)} & 0 & e^{\mathrm{i}\left(\phi_{4}-\phi_{3}\right)} & 1
\end{array}\right]}
\end{aligned}
$$

\downarrow (angular synchronization)

Back to our Example ...

$$
\begin{aligned}
& {\left[\left|x_{1}\right|^{2} x_{1} x_{2}^{*} x_{2} x_{1}^{*}\left|x_{2}\right|^{2} x_{2} x_{3}^{*} x_{3} x_{2}^{*}\left|x_{3}\right|^{2} x_{3} x_{4}^{*} x_{4} x_{3}^{*}\left|x_{4}\right|^{2} x_{4} x_{1}^{*} x_{1} x_{4}^{*}\right]^{T}} \\
& \downarrow \text { (rearrange) } \\
& {\left[\begin{array}{cccc}
\left|x_{1}\right|^{2} & x_{1} x_{2}^{*} & -0 & x_{1} x_{4}^{*} \\
x_{2} x_{1}^{*} & \left|x_{2}\right|^{2} & x_{2} x_{3}^{*} & 0 \\
\hdashline 0^{-} & x_{3} x_{2}^{*} & \left|x_{3}\right|^{2} & x_{3} x_{4}^{*} \\
x_{4} x_{1}^{*} & 0^{*} & x_{4} x_{3}^{*} & \left|x_{4}\right|^{2}
\end{array}\right]=-(2 \delta-1 \text { entries in band })} \\
& \downarrow \text { (normalize) } \\
& {\left[\begin{array}{cccc}
1 & e^{\mathrm{i}\left(\phi_{1}-\phi_{2}\right)} & 0 & e^{\mathrm{i}\left(\phi_{1}-\phi_{4}\right)} \\
e^{\mathrm{i}\left(\phi_{2}-\phi_{1}\right)} & 1 & e^{\mathrm{i}\left(\phi_{2}-\phi_{3}\right)} & 0 \\
0 & e^{\mathrm{i}\left(\phi_{3}-\phi_{2}\right)} & 1 & e^{\mathrm{i}\left(\phi_{3}-\phi_{4}\right)} \\
e^{\mathrm{i}\left(\phi_{4}-\phi_{1}\right)} & 0 & e^{\mathrm{i}\left(\phi_{4}-\phi_{3}\right)} & 1
\end{array}\right]} \\
& \downarrow \text { (angular synchronization) } \\
& \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}
\end{aligned}
$$

Back to our Example ...

$$
\begin{aligned}
& {\left[\left|x_{1}\right|^{2} x_{1} x_{2}^{*} x_{2} x_{1}^{*}\left|x_{2}\right|^{2} x_{2} x_{3}^{*} x_{3} x_{2}^{*}\left|x_{3}\right|^{2} x_{3} x_{4}^{*} x_{4} x_{3}^{*}\left|x_{4}\right|^{2} x_{4} x_{1}^{*} x_{1} x_{4}^{*}\right]^{T}} \\
& \downarrow \text { (rearrange) } \\
& {\left[\begin{array}{cccc}
\left|x_{1}\right|^{2} & x_{1} x_{2}^{*} & -0 & x_{1} x_{4}^{*} \\
-x_{2} x_{1}^{*} & \left|x_{2}\right|^{2} & x_{2} x_{3}^{*-} & -0 \\
\hdashline 0^{-} & x_{3} x_{2}^{*} & \left|x_{3}\right|^{2} & x_{3} x_{4}^{*} \\
x_{4} x_{1}^{*} & 0^{*} \cdots & x_{4} x_{3}^{*} & \left|x_{4}\right|^{2}
\end{array}\right](2 \delta-1 \text { entries in band })} \\
& \downarrow \text { (normalize) } \\
& {\left[\begin{array}{cccc}
1 & e^{\mathrm{i}\left(\phi_{1}-\phi_{2}\right)} & 0 & e^{\mathrm{i}\left(\phi_{1}-\phi_{4}\right)} \\
e^{\mathrm{i}\left(\phi_{2}-\phi_{1}\right)} & 1 & e^{\mathrm{i}\left(\phi_{2}-\phi_{3}\right)} & 0 \\
0 & e^{\mathrm{i}\left(\phi_{3}-\phi_{2}\right)} & 1 & e^{\mathrm{i}\left(\phi_{3}-\phi_{4}\right)} \\
e^{\mathrm{i}\left(\phi_{4}-\phi_{1}\right)} & 0 & e^{\mathrm{i}\left(\phi_{4}-\phi_{3}\right)} & 1
\end{array}\right]} \\
& \downarrow \text { (angular synchronization) } \\
& \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}
\end{aligned}
$$

(Signal Reconstruction) $\quad\left[\begin{array}{llll}\left|x_{1}\right| e^{\dot{\mathrm{i}} \phi_{1}} & \left|x_{2}\right| e^{\dot{\mathrm{i}} \phi_{2}} & \left|x_{3}\right| e^{\dot{\mathrm{i}} \phi_{3}} & \left|x_{4}\right| e^{\dot{\mathrm{i}} \phi_{4}}\end{array}\right]^{T}$

The Angular Synchronization Problem

The Angular Synchronization Problem
Estimate d unknown angles $\phi_{1}, \phi_{2}, \ldots, \phi_{d} \in[0,2 \pi)$ from noisy and possibly incomplete measurements of their differences,

$$
\phi_{i, j}:=\phi_{i}-\phi_{j} \quad \bmod 2 \pi .
$$

- Several possible approaches: eigenvector methods, semidefinite programming ...
- Today: Greedy angular synchronization

Greedy Angular Synchronization

(1) Set the largest magnitude component to have zero phase angle; i.e.,

$$
\arg \left(x_{j}\right)=0, \quad j=\underset{i}{\operatorname{argmax}}\left|x_{i}\right|^{2}
$$

(2) Use this entry to set the phase angles of its δ neighboring entries; i.e.,

$$
\arg \left(x_{k}\right)=\arg \left(x_{j}\right)-\phi_{j, k}, \quad|j-k \bmod d|<\delta
$$

(3) Use the next largest magnitude component from these δ entries and repeat the process.

Greedy Angular Synchronization

$$
\begin{aligned}
& {\left[\left|x_{1}\right|^{2} x_{1} x_{2}^{*} x_{2} x_{1}^{*}\left|x_{2}\right|^{2} x_{2} x_{3}^{*} x_{3} x_{2}^{*}\left|x_{3}\right|^{2} x_{3} x_{4}^{*} x_{4} x_{3}^{*}\left|x_{4}\right|^{2} x_{4} x_{1}^{*} x_{1} x_{4}^{*}\right]^{T}} \\
& \downarrow \text { (re-arrange) } \\
& {\left[\begin{array}{cccc}
\left|x_{1}\right|^{2} & x_{1} x_{2}^{*} & 0 & x_{1} x_{4}^{*} \\
-x_{2} x_{1}^{*} & \left|x_{2}\right|^{2} & x_{2} x_{3}^{*} \cdots & 0 \\
\hdashline 0^{*} & x_{3} x_{2}^{*} & \left|x_{3}\right|^{2} & x_{3} x_{4}^{*} \cdots \\
x_{4} x_{1}^{*} & 0^{*} \cdots & x_{4} x_{3}^{*} & \left|x_{4}\right|^{2}
\end{array}\right](2 \delta-1 \text { entries in band })} \\
& \downarrow \text { (normalize) } \\
& {\left[\begin{array}{cccc}
& e^{\mathrm{i}(\underbrace{}_{1}-\phi_{2}}) & & \\
1 & e^{\phi_{1,2}} & 0 & e^{\dot{\mathrm{i}}\left(\phi_{1}-\phi_{4}\right)} \\
e^{\dot{\mathrm{i}}\left(\phi_{2}-\phi_{1}\right)} & 1 & e^{\mathrm{i}\left(\phi_{2}-\phi_{3}\right)} & 0 \\
0 & e^{\mathrm{i}\left(\phi_{3}-\phi_{2}\right)} & 1 & e^{\dot{\mathrm{i}}\left(\phi_{3}-\phi_{4}\right)} \\
e^{\dot{\mathrm{i}}\left(\phi_{4}-\phi_{1}\right)} & 0 & e^{\mathrm{i}\left(\phi_{4}-\phi_{3}\right)} & 1
\end{array}\right]} \\
& \downarrow \text { (angular synchronization) } \\
& \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}
\end{aligned}
$$

Greedy Angular Synchronization

Applying this to our example problem...

- Assume, without loss of generality, that

$$
\left|x_{1}\right| \geq\left|x_{i}\right|, i \in\{2,3,4\}
$$

(1) We start by setting ${ }^{3} \arg \left(x_{1}\right)=0$.

2 We may now set the phase of x_{2} and x_{4} using the estimated phase differences $\phi_{1,2}$ and $\phi_{1,4}$ respectively; i.e.,

$$
\arg \left(x_{2}\right)=\arg \left(x_{1}\right)-\phi_{1,2}, \quad \arg \left(x_{4}\right)=\arg \left(x_{1}\right)-\phi_{1,4} .
$$

(3) Similarly, we next set $\arg \left(x_{3}\right)=\arg \left(x_{2}\right)-\phi_{2,3}$, thereby recovering all of the entries' unknown phases.

[^2]
Outline

1 The Phase Retrieval Problem

2 BlockPR: Fast Phase Retrieval from Local Correlation
Measurements
Measurement Constructions
Solving for Phase Differences
Angular Synchronization

3 Theoretical Guarantees

4 Numerical Simulations

Block-Circulant Matrix: Condition Number Bounds

Theorem (Iwen, V., Wang 2015)
Choose entries of the measurement mask $\left(\mathbf{m}_{i}\right)$ as follows:

$$
\left(\mathbf{m}_{i}\right)_{\ell}=\left\{\begin{array}{ll}
\frac{e^{-\ell / a}}{\sqrt[4]{42 \delta-1}} \cdot \mathbb{e}^{\frac{2 \pi i n i \cdot i}{2 \delta-1}}, & \ell \leq \delta \\
0, & \ell>\delta
\end{array}, \quad \begin{array}{l}
a:=\max \left\{4, \frac{\delta-1}{2}\right\}, \\
i=1,2, \ldots, N .
\end{array}\right.
$$

Then, the resulting system matrix for the phase differences, M^{\prime}, has condition number

$$
\kappa\left(M^{\prime}\right)<\max \left\{144 \mathrm{e}^{2}, \frac{9 \mathrm{e}^{2}}{4} \cdot(\delta-1)^{2}\right\} .
$$

- Deterministic (windowed DFT-type) measurement masks!
- δ is typically chosen to be $c \log _{2} d$ with c small (2-3).
- Extensions: oversampling, random masks

Recovery Guarantee - Non-Sparse ("Flat") Signals

Theorem (Iwen, V., Wang 2015)

There exist fixed universal constants $C, C^{\prime} \in \mathbb{R}^{+}$such that following holds: Let $M \in \mathbb{C}^{D \times d}$ be defined as in the previous slide, and suppose that $\mathbf{x} \in \mathbb{C}^{d}$ is non-sparse ${ }^{\text {a }}$ with $d>2$ and $\|\mathbf{x}\|_{2}^{2} \geq C(\delta-1) d^{2}\|\mathbf{n}\|_{2}$. Then, the proposed algorithm is guaranteed to recover an $\tilde{\mathrm{x}} \in \mathbb{C}^{d}$ with

$$
\min _{\theta \in[0,2 \pi)}\left\|\mathbf{x}-\mathbb{e}^{\mathrm{i} \theta} \tilde{\mathbf{x}}\right\|_{2}^{2} \leq C^{\prime} d^{2}(\delta-1)\|\mathbf{n}\|_{2}
$$

when given arbitrarily noisy input measurements $\mathbf{b}=|M \mathbf{x}|^{2}+\mathbf{n} \in \mathbb{R}^{D}$. Furthermore, the algorithm requires just $\mathcal{O}(\delta \cdot d \log d)$ operations for this choice of $M \in \mathbb{C}^{D \times d}$.

[^3]
Recovery Guarantee - Arbitrary Signals

Theorem (Iwen, V., Wang 2015)

Let $\mathbf{x} \in \mathbb{C}^{d}$ with d sufficiently large have $\|\mathbf{x}\|_{2}^{2} \geq C(d \ln d)^{2} \ln ^{3}(\ln d)\|\mathbf{n}\|_{2}$. ${ }^{\text {a }}$ Then, one can select a random measurement matrix $\tilde{M} \in \mathbb{C}^{D \times d}$ such that the following holds with probability at least $1-\frac{1}{C^{\prime} \cdot \ln ^{2}(d) \cdot \ln ^{3}(\ln d)}$: the proposed algorithm will recover an $\tilde{\mathbf{x}} \in \mathbb{C}^{d}$ with

$$
\min _{\theta \in[0,2 \pi)}\left\|\mathrm{x}-\mathrm{e}^{\mathrm{i} \theta} \tilde{\mathbf{x}}\right\|_{2}^{2} \leq C^{\prime \prime}(d \ln d)^{2} \ln ^{3}(\ln d)\|\mathbf{n}\|_{2}
$$

when given arbitrarily noisy input measurements
$\mathbf{b}=|M \mathbf{x}|^{2}+\mathbf{n} \in \mathbb{R}^{D}$. Here D can be chosen to be $\mathcal{O}\left(d \cdot \ln ^{2}(d) \cdot \ln ^{3}(\ln d)\right)$. Furthermore, the algorithm will run in $\mathcal{O}\left(d \cdot \ln ^{3}(d) \cdot \ln ^{3}(\ln d)\right)$-time.

[^4]
Outline

1 The Phase Retrieval Problem

2 BlockPR: Fast Phase Retrieval from Local Correlation Measurements

Measurement Constructions Solving for Phase Differences Angular Synchronization

3 Theoretical Guarantees

4 Numerical Simulations

Efficiency

- iid Complex Gaussian test signal
- Averaged over 100 trials
- Simulations performed in Matlab on a laptop computer with 4GB RAM

Robustness

- iid complex Gaussian signal
- $d=64$
- $7 d$ measurements
- Deterministic (windowed Fourier-like) measurements

Robustness

- iid complex Gaussian signal
- $d=2048$
- Not feasible with SDP-based methods such as PhaseLift on a laptop in Matlab
- Random measurements

In Summary...

- BlockPR allows for essentially linear-time robust phase retrieval from local correlation measurement constructions.
- Deterministic measurements for flat vectors.
- First known global robust recovery guarantee for phase retrieval from local correlation (ptychographic) measurements.

Current and Future Directions

- (Sublinear-time) compressive phase retrieval
- Improved angular synchronization frameworks
- Extensions to 2D and Ptychography

Publications/Preprints/Code

This Talk
Mark Iwen, A. Viswanathan and Yang Wang. "Fast Phase Retrieval from Local Correlation Measurements." arXiv:1501.02377, 2015.

Code: https://bitbucket.org/charms/blockpr

Related Work

M. Iwen, A. Viswanathan, and Y. Wang. "Robust Sparse Phase Retrieval Made Easy." (in press) ACHA, 2015. arXiv:1410.5295
A. Viswanathan and Mark Iwen. "Fast Angular Synchronization for Phase Retrieval via Incomplete Information." Proc. SPIE 9597, Wavelets+Sparsity XVI, 2015.
A. Viswanathan and Mark Iwen. "Fast Compressive Phase Retrieval." Asilomar Conf. Signals, Systems Computers, 2015.

Code: https://bitbucket.org/charms/sparsepr

Questions?

Appendix: Condition Number Proof Sketch

(Step 1) M^{\prime} is block-circulant and therefore admits a unitary decomposition

$$
U_{2 \delta-1}^{*} M^{\prime} U_{2 \delta-1}=J=\operatorname{blockdiag}\left(J_{1}, J_{2}, \ldots, J_{d}\right)
$$

where $J_{1}, \ldots, J_{d} \in \mathbb{C}^{(2 \delta-1) \times(2 \delta-1)}$ are defined as

$$
J_{k}:=\sum_{l=1}^{\delta} M_{l}^{\prime} \cdot \mathbb{e}^{\frac{2 \pi \mathrm{i} \cdot(k-1) \cdot(l-1)}{d}}
$$

and $U_{\alpha} \in \mathbb{C}^{\alpha d \times \alpha d}$ are unitary block Fourier matrices defined by

$$
U_{\alpha}:=\frac{1}{\sqrt{d}}\left(\begin{array}{llll}
I_{\alpha} & I_{\alpha} & \ldots & I_{\alpha} \\
I_{\alpha} & I_{\alpha} \mathrm{e}^{\frac{2 \pi \mathrm{i}}{d}} & \ldots & I_{\alpha} \mathrm{e}^{\frac{2 \pi \mathrm{i} \cdot(d-1)}{d}} \\
& & \ddots & \\
I_{\alpha} & I_{\alpha} \mathrm{e}^{\frac{2 \pi \mathrm{i} \cdot(d-2)}{d}} & \ldots & I_{\alpha} \mathrm{e}^{\frac{2 \pi \mathrm{i} \cdot(d-2) \cdot(d-1)}{d}} \\
I_{\alpha} & I_{\alpha} \mathrm{e}^{\frac{2 \pi \mathrm{i} \cdot(d-1)}{d}} & \ldots & I_{\alpha} \mathrm{e}^{\frac{2 \pi \mathrm{i} \cdot(d-1) \cdot(d-1)}{d}}
\end{array}\right) .
$$

Appendix: Condition Number Proof Sketch

(Step 2) For the prescribed structured measurements, evaluating J_{k} yields

$$
J_{k}=F_{2 \delta-1}\left(\begin{array}{llll}
s_{k, 1} & 0 & \ldots & 0 \\
0 & s_{k, 2} & 0 & \ldots \\
0 & 0 & \ddots & 0 \\
0 & \ldots & 0 & s_{k, 2 \delta-1}
\end{array}\right)
$$

where $F_{\alpha} \in \mathbb{C}^{\alpha \times \alpha}$ is the unitary $\alpha \times \alpha$ discrete Fourier transform matrix, and $\left\{s_{k, j}\right\}_{k \in\{1,2, \ldots, d\}}^{j \in\{1,2, \ldots, 2 \delta-1\}}$ can be explicitly evaluated.

Since $F_{2 \delta-1}$ is unitary,

$$
\min _{j \in[2 \delta-1]}\left|s_{k, j}\right| \leq \sigma_{2 \delta-1}\left(J_{k}\right) \leq \sigma_{1}\left(J_{k}\right) \leq \max _{j \in[2 \delta-1]}\left|s_{k, j}\right|
$$

Appendix: Condition Number Proof Sketch

(Step 3) Bound the maximum and minimum values of $\left|s_{k, j}\right|$ from above and below, respectively, over all $k \in\{1,2, \ldots, d\}$ and $j \in\{1,2, \ldots, 2 \delta-1\}$. Minimize upper bound w.r.t. a parameter.
(Step 4) Final result obtained using

$$
\kappa\left(M^{\prime}\right)=\frac{\sigma_{1}\left(M^{\prime}\right)}{\sigma_{D}\left(M^{\prime}\right)}=\frac{\sigma_{1}(J)}{\sigma_{D}(J)} \leq \frac{\max _{k \in\{1,2, \ldots, d\}} \sigma_{1}\left(J_{k}\right)}{\min _{k \in\{1,2, \ldots, d\}} \sigma_{2 \delta-1}\left(J_{k}\right)}
$$

Appendix: Flattening "Non-Sparse" Vectors

- Recall: Due to compact support of our masks, only $\left\lfloor\frac{\delta-3}{2}\right\rfloor$-flat vectors can be recovered
- Arbitrary vectors can be "flattened" by multiplication with a random unitary matrix such as $W=P F B$, where
- $P \in\{0,1\}^{d \times d}$ is a permutation matrix selected uniformly at random from the set of all $d \times d$ permutation matrices
- F is the unitary $d \times d$ discrete Fourier transform matrix
- $B \in\{-1,1\}^{d \times d}$ is a random diagonal matrix with i.i.d. symmetric Bernoulli entries on its diagonal

Some Details

Definition

Let $m \in\{1,2, \ldots, d\}$. A vector $\mathbf{x} \in \mathbb{C}^{d}$ will be called m-flat if its entries can be partitioned into at least $\left\lfloor\frac{d}{m}\right\rfloor$ contiguous blocks such that:

1 Every block contains either m or $m+1$ entries,
2 Every block contains at least one entry whose magnitude is $\geq \frac{\|\mathbf{x}\|_{2}}{2 \sqrt{d}}$, and

- The smaller m is, the flatter (and less sparse) \mathbf{x} must be.

Some Details

Definition

Let $\epsilon \in(0,1)$, and $\mathcal{S} \subset \mathbb{C}^{d}$ be finite. An $m \times d$ matrix A is a linear Johnson-Lindenstrauss embedding of \mathcal{S} into \mathbb{C}^{m} if

$$
(1-\epsilon)\|\mathbf{u}-\mathbf{v}\|_{2}^{2} \leq\|A \mathbf{u}-A \mathbf{v}\|_{2}^{2} \leq(1+\epsilon)\|\mathbf{u}-\mathbf{v}\|_{2}^{2}
$$

holds $\forall \mathbf{u}, \mathbf{v} \in \mathcal{S} \cup\{\mathbf{0}\}$. In this case we will say that A is a $J L(m, d, \epsilon)$-embedding of \mathcal{S} into \mathbb{C}^{m}.

JL embeddings are closely related to the Restricted Isometry Property (RIP). A matrix with the restricted isometry property can be used to construct a Johnson-Lindenstrauss embedding matrix.

Some Details

- $W=P F B$
- For any given $m \in\{1,2, \ldots, d\}$, one can partition W into $\left\lfloor\frac{d}{m}\right\rfloor$ blocks of contiguous rows,

$$
W=\left(W_{1} W_{2} \ldots W_{\left\lfloor\frac{d}{m}\right\rfloor}\right)^{T}
$$

- Each renormalized sub-matrix of $W, \sqrt{\frac{d}{m}} \cdot W_{j}$ is "almost" a random sampling matrix times a random diagonal Bernoulli matrix and behaves like a $\mathrm{JL}(m, d, \epsilon)$-embedding of our signal x into \mathbb{C}^{m} (or \mathbb{C}^{m+1}).
- Each block of m consecutive entries of $W \mathbf{x}$ should have roughly the same ℓ_{2}-norm as one another.

[^0]: ${ }^{1}$ (upto a global phase offset)

[^1]: ${ }^{2}$ for a large class of real-world signals

[^2]: ${ }^{3}$ Recall that we can only recover x up to an unknown global phase factor which, in this case, will be the true phase of x_{1}.

[^3]: ${ }^{a}$ does not have more than $\lfloor(\delta-3) / 2\rfloor$ consecutive zeros or small entries; see preprint for details.

[^4]: ${ }^{\text {a }}$ Herein $C, C^{\prime}, C^{\prime \prime} \in \mathbb{R}^{+}$are all fixed and absolute constants.

