

[†]School of Electrical, Computer and Energy Engineering Arizona State University

Introduction

• We discuss the reconstruction of compactly supported functions from non-harmonic samples of their Fourier transform.

• This problem is of significance in applications such as MR imaging.

Let $f \in L^2(\mathbb{R})$ be compactly supported in $[-\pi,\pi)$. Given the samples $\langle f, e^{i\omega_k x} \rangle$, ω_k not necessarily $\in \mathbb{Z}$, how do we reconstruct f accurately?

• The reconstruction problem is complicated by issues such as small sample size, non-uniform sample density and piecewise-smooth nature of the underlying function.

Non-harmonic Acquisitions

- The problem posed by non-harmonic acquisitions can be understood by looking at the properties of the kernel described by the non-harmonic modes.
- Let $A_N := \sum_{|k| \le N} e^{i\omega_k x}$ be the "non-harmonic" kernel. Examples of this kernel for two different sample acquisitions are plotted below.

- Depending on the acquired samples, A_N may be non-decreasing and may suffer from poor localization.
- When using conventional Fourier partial sums, these effects appear in the reconstruction, distinct from traditional Gibbs artifacts.

Fig: Reconstruction - Log Sampling

Reconstruction from Non-uniform Spectral Data

Aditya Viswanathan[†], Anne Gelb[‡], Douglas Cochran[†] and Rosemary Renaut[‡]

[‡]School of Mathematical & Statistical Sciences Arizona State University

Gridding Reconstruction

• Gridding, [1], maps non-uniform data to a uniform grid using convolution. Let $\hat{f}(\omega_k)$ denote input samples and $\hat{g}(k)$ denote "regridded" coefficients. $\hat{g}(k) = (\hat{f} * \hat{\phi})(\omega) \Big|_{\omega = k} \approx \sum_{m \text{ st. } |k - \omega_m| \le q} \alpha_m \hat{f}(\omega_m) \hat{\phi}(k - \omega_m)$

- ϕ is a window function, q is a neighborhood parameter and α denotes quadrature weights or density compensation factors (DCFs).
- Standard Fourier reconstruction may now be used to recover the physical-space function; i.e.,

$$S_N \tilde{g}(x) = \sum_{k=-N}^N \hat{\tilde{g}}(k) e^{ikx}$$

• The function approximation is obtained after dividing out the window. $S_N \tilde{f}(x) = \frac{\tilde{g}(x)}{\phi(x)}$

Fig: Reconstruction - Brain Cross-section

- While extensively used, this method typically requires significant filtering to mitigate the effects of non-harmonic acquisition.
- Gridding does not handle non-uniform sampling density well, [2].

Use of Spectral Re-projection Methods

- This framework was originally devised to overcome the Gibbs phenomenon.
- The function is reconstructed in an alternate (fast converging or Gibbs complementary, [3]) basis. The high Fourier modes have exponentially small projections on the low modes of this new basis.
- For Fourier expansions, the Gegenbauer polynomials $\{C_l^{\lambda}\}$ have been found to form a Gibbs complementary basis.

Reconstruction Procedure

- Perform convolutional gridding to obtain coefficients on the equispaced grid $(\hat{\tilde{g}})$.
- Identify smooth regions in g using methods such as the concentration method of edge detection, [4].
- 3 In each smooth interval:
- 1 Re-project Fourier spectral data onto the Gegenbauer basis.

$$z_l = \langle S_N \tilde{g}, C_l^\lambda \rangle_w = \frac{1}{h_l^\lambda} \int_{-1}^1 (1 - \eta^2)^{\lambda - 1/2} C_l^\lambda(\eta) \sum_{|k| \le N} \hat{\tilde{g}}(k) e^{i\pi k\eta} d\eta$$

2 Function reconstruction using the Gegenbauer partial sum $P_m S_N \tilde{g}$.

$$P_m S_N \tilde{g}(x) = \sum_{l=0}^m z_l C_l^{\lambda}(x)$$

• Recover f by dividing out ϕ ; i.e., $\tilde{f}(x) = \frac{P_m S_N \tilde{g}(x)}{\phi(x)}$

Advantages of Spectral Re-projection

- The re-projection process exponentially damps the error in the high-mode regridded coefficients.
- Gibbs artifacts are also removed, leading to improved reconstruction quality.
- There is evidence to suggest that the spectral re-projection reconstructions require far fewer input measurements.

Current Directions - Using Edge Information

• Integrating the Fourier integral by parts, we obtain

$$\hat{f}(k) = \frac{1}{2\pi} \sum_{a \in \mathcal{A}} \left(\frac{[f](\zeta_a)}{ik} + \frac{[f'](\zeta_a)}{(ik)^2} + \frac{[f''](\zeta_a)}{(ik)^3} + \dots \right) e^{-ik}$$

- $[f](\cdot)$ denotes jump values, $[f'](\cdot)$ denotes jump values in the derivative of f, and so on. • $\zeta_a, a \in \mathcal{A}$ denote the jump locations.
- We note that estimates of these jump locations and values may be obtained by applying the concentration method of edge detection (or one of its variants) on the regridded spectral coefficients.
- Substituting these estimates in the above equation allows us to recover the equispaced Fourier coefficients to within $\mathcal{O}\left(\frac{1}{|k|^2}\right)$ accuracy.
- This significantly improves on the high-mode accuracy of standard gridding.

True Interpolate 30 40 50 60 70 80 90 100 110 120 Fig: Standard Gridding

References and Acknowledgement

- 1 J. D. O'Sullivan, Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography, in IEEE Trans. Med. Imag., 4(4):200–207, 1985.
- 2 A. Viswanathan, A. Gelb, D. Cochran and R. Renaut, On reconstruction from non-uniform spectral data, in J. Sci. Comp., (submitted) (Sep. 2009) **3** D. Gottlieb and C. W. Shu, On the Gibbs Phenomenon and its Resolution, in SIAM
- Review, 39(4):644-668, 1997.
- A. Gelb and E. Tadmor, *Detection of Edges in Spectral Data*, in Appl. Comp. Harmonic Anal., 7: 101–135, 1999.

This work was supported in part by National Science Foundation grant FRG 0652833.