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Introduction

• We discuss the reconstruction of compactly supported functions from
non-harmonic samples of their Fourier transform.

• This problem is of significance in applications such as MR imaging.
Let f ∈ L2(R) be compactly supported in [−π, π). Given the samples
〈f, eiωkx〉, ωk not necessarily ∈ Z, how do we reconstruct f accurately?
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Fig: True Function

• The reconstruction problem is complicated by issues such as small sample
size, non-uniform sample density and piecewise-smooth nature of the
underlying function.

Non-harmonic Acquisitions

• The problem posed by non-harmonic acquisitions can be understood by
looking at the properties of the kernel described by the non-harmonic
modes.

• Let AN := Σ
|k|≤N

eiωkx be the “non-harmonic” kernel. Examples of this
kernel for two different sample acquisitions are plotted below.
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Fig: Sampling Schemes
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• Depending on the acquired samples, AN may be non-decreasing and may
suffer from poor localization.

• When using conventional Fourier partial sums, these effects appear in the
reconstruction, distinct from traditional Gibbs artifacts.
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Fig: Reconstruction - Jittered Sampling
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Fig: Reconstruction - Log Sampling

Gridding Reconstruction

• Gridding, [1], maps non-uniform data to a uniform grid using convolution.
Let f̂ (ωk) denote input samples and ĝ(k) denote “regridded” coefficients.

ĝ(k) = (f̂ ∗ φ̂)(ω)
∣∣∣∣∣∣∣ω=k
≈ Σ

m st. |k−ωm|≤q
αmf̂ (ωm)φ̂(k − ωm)

• φ is a window function, q is a neighborhood parameter and α denotes
quadrature weights or density compensation factors (DCFs).

• Standard Fourier reconstruction may now be used to recover the
physical-space function; i.e.,

SN g̃(x) = N
Σ

k=−N
ˆ̃g(k)eikx

• The function approximation is obtained after dividing out the window.
SN f̃ (x) = g̃(x)

φ(x)
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Fig: Example Reconstruction
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Fig: Reconstruction - Brain Cross-section

• While extensively used, this method typically requires significant filtering
to mitigate the effects of non-harmonic acquisition.

• Gridding does not handle non-uniform sampling density well, [2].

Use of Spectral Re-projection Methods

• This framework was originally devised to overcome the Gibbs phenomenon.
• The function is reconstructed in an alternate (fast converging or Gibbs
complementary, [3]) basis. The high Fourier modes have exponentially
small projections on the low modes of this new basis.

• For Fourier expansions, the Gegenbauer polynomials {Cλ
l } have been found

to form a Gibbs complementary basis.

Reconstruction Procedure

1 Perform convolutional gridding to obtain coefficients on the equispaced
grid (ˆ̃g).

2 Identify smooth regions in g using methods such as the concentration
method of edge detection, [4].

3 In each smooth interval:
1 Re-project Fourier spectral data onto the Gegenbauer basis.

zl = 〈SN g̃, Cλl 〉w = 1
hλl

∫ 1
−1(1− η2)λ−1/2Cλl (η) Σ

|k|≤N
ˆ̃g(k)eiπkηdη

2 Function reconstruction using the Gegenbauer partial sum PmSN g̃.

PmSN g̃(x) = m
Σ
l=0

zlC
λ
l (x)

4 Recover f by dividing out φ; i.e., f̃ (x) = PmSN g̃(x)
φ(x)
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Fig: Reconstruction
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Advantages of Spectral Re-projection
• The re-projection process exponentially damps the error in the high-mode
regridded coefficients.

• Gibbs artifacts are also removed, leading to improved reconstruction
quality.

• There is evidence to suggest that the spectral re-projection reconstructions
require far fewer input measurements.

Current Directions - Using Edge Information

• Integrating the Fourier integral by parts, we obtain

f̂ (k) = 1
2π Σ

a∈A


[f ](ζa)
ik

+ [f ′](ζa)
(ik)2 + [f ′′](ζa)

(ik)3 + ...

 e
−ikζa

• [f ](·) denotes jump values, [f ′](·) denotes jump values in the derivative of f , and so on.
• ζa, a ∈ A denote the jump locations.

• We note that estimates of these jump locations and values may be obtained
by applying the concentration method of edge detection (or one of its
variants) on the regridded spectral coefficients.

• Substituting these estimates in the above equation allows us to recover the
equispaced Fourier coefficients to within O

 1
|k|2

 accuracy.
• This significantly improves on the high-mode accuracy of standard gridding.

30 40 50 60 70 80 90 100 110 120

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

k

F
(k

)

Fourier Coefficients

 

 
True
Interpolated

Fig: Standard Gridding
30 40 50 60 70 80 90 100 110 120 130

−0.02

−0.01

0

0.01

0.02

0.03

k

F
(k

)

Fourier Coefficients

 

 
True
With edge information

Fig: On Incorporating Edge Information
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