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KADISON–KASTLER STABLE FACTORS

JAN CAMERON, ERIK CHRISTENSEN, ALLAN M. SINCLAIR, ROGER R. SMITH,
STUART WHITE, AND ALAN D. WIGGINS

Abstract. A conjecture of Kadison and Kastler from 1972 asks whether sufficiently close
operator algebras in a natural uniform sense must be small unitary perturbations of one
another. For n ≥ 3 and a free ergodic probability measure preserving action of SLn(Z) on a
standard nonatomic probability space (X,µ), write M = ((L∞(X,µ)⋊SLn(Z))⊗R, where
R is the hyperfinite II1 factor. We show that whenever M is represented as a von Neumann
algebra on some Hilbert space H and N ⊆ B(H) is sufficiently close to M , then there is
a unitary u on H close to the identity operator with uMu∗ = N . This provides the first
nonamenable class of von Neumann algebras satisfying Kadison and Kastler’s conjecture.

We also obtain stability results for crossed products L∞(X,µ)⋊Γ whenever the compar-
ison map from the bounded to usual group cohomology vanishes in degree 2 for the module
L2(X,µ). In this case, any von Neumann algebra sufficiently close to such a crossed product
is necessarily isomorphic to it. In particular, this result applies when Γ is a free group.

This paper provides a complete account of the results announced in [12].

Contents

1. Introduction 1
2. Preliminaries 7
3. Normalizers of amenable subalgebras 21
4. Reduction to standard position and Cartan masas 25
5. Structural properties of close II1 factors 37
6. Kadison-Kastler stable factors 42
References 56

1. Introduction

In [51], Kadison and Kastler introduced a metric d on the collection of all closed subalge-
bras of the bounded operators on a Hilbert space in terms of the Hausdorff distance between
the unit balls of two algebras M and N , and conjectured that sufficiently close operator
algebras should be isomorphic. Qualitatively, M and N are close in the Kadison-Kastler
metric if each operator in the unit ball of M is close to an operator in the unit ball of N
and vice versa. Canonical examples of close operator algebras are obtained by small unitary
perturbations: given an operator algebra M on a Hilbert space H and a unitary operator
u on H close to the identity operator, then uMu∗ is close to M . The strongest form of the
Kadison-Kastler conjecture states that every algebra sufficiently close to a von Neumann

JC’s research is partially supported by an AMS-Simons research travel grant.
RS’s research is partially supported by NSF grant DMS-1101403.
SW’s research is partially supported by EPSRC grant EP/I019227/1.

1

http://arxiv.org/abs/1209.4116v2
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algebra M arises in this fashion. This has been established when M is an injective von Neu-
mann algebra [18, 89, 44, 21] (building on the earlier special cases in [17, 73]) but remains
open for general von Neumann algebras.

We now present the central result of the paper: Theorem A. This has been announced
in our short survey article [12] which contains a heuristic discussion of our methods but no
formal proofs.

Theorem A. Let n ≥ 3 and let α : SLn(Z) y (X, µ) be a free, ergodic and measure
preserving action of SLn(Z) on a standard nonatomic probability space (X, µ). Write M =
(L∞(X, µ) ⋊α SLn(Z))⊗R, where R is the hyperfinite II1 factor. For ε > 0, there exists
δ > 0 with the following property: given a normal unital representation M ⊆ B(H) and
another von Neumann algebra N on H with d(M,N) < δ, there exists a unitary u ∈ H with
‖u− IH‖ < ε and uMu∗ = N .

Theorem A provides the first nonamenable II1 factors which satisfy the strongest form
of the Kadison-Kastler conjecture. A key ingredient in this result is the vanishing of the
bounded cohomology groups H2

b (SLn(Z), L
∞
R (X, µ)) for n ≥ 3 from [61, 9, 63] and in Theo-

rem A, which is then an immediate consequence of Theorem 6.3.4, SLn(Z) can be replaced
with any other group with this property. Via the work of [4, 83, 84, 85], there are uncount-
ably many pairwise nonisomorphic II1 factors to which this theorem applies (see Remark
6.3.6).

The Kadison-Kastler conjecture is known to be false in full generality. In [16], examples
of arbitrarily close nonseparable and nonisomorphic C∗-algebras were found, while in [45]
Johnson presented examples of arbitrarily close unitarily conjugate pairs of separable nuclear
C∗-algebras where the implementing unitaries could not be chosen to be close to the identity
operator. Thus the appropriate form of the conjecture for C∗-algebras is that sufficiently close
separable C∗-algebras should be isomorphic or spatially isomorphic. In this last form, the
conjecture has been settled affirmatively for close separable nuclear C∗-algebras on separable
Hilbert spaces [28] (see also [27]) with earlier special cases established in [21, 74, 75, 55]. Our
methods also give examples of nonamenable von Neumann algebras satisfying these weaker
forms of the conjecture, as we now state. The hypotheses on the action in the following
theorem ensure that M is a II1 factor with separable predual satisfying P ′ ∩M ⊆ P . The
three parts of Theorem B are proved in Section 6 as Corollary 6.1.2, Corollary 6.2.1 and
Theorem 6.3.2 respectively.

Theorem B. Let α : Γ y P be a centrally ergodic, properly outer and trace-preserving
action of a countable discrete group Γ on a finite amenable von Neumann algebra P with
separable predual and write M = P ⋊α Γ.

(1) Suppose that the comparison map

(1.1) H2
b (Γ, L

2(Z(P )sa)) → H2(Γ, L2(Z(P )sa))

from bounded cohomology to usual cohomology vanishes, where Z(P ) denotes the cen-
ter of P . Then, given a normal unital representation M ⊆ B(H), each von Neumann
algebra N on B(H) sufficiently close to M is isomorphic to M .

(2) Suppose that the comparison map (1.1) vanishes and that M has property Gamma.
Then, given a normal unital representation M ⊆ B(H), each von Neumann algebra
N on B(H) sufficiently close to M is spatially isomorphic to M .
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(3) Suppose that the bounded cohomology group H2
b (Γ,Z(P )sa) vanishes. Then, given

ε > 0, there exists δ > 0 such that for a normal unital representation ι :M → B(H)
and a von Neumann subalgebra N ⊆ B(H) with d(ι(M), N) < ε, there exists a
surjective ∗-isomorphism θ :M → N with ‖ι− θ‖ < δ.

In order to distinguish the slightly different external rigidity properties arising in Theorem
A and the different parts of Theorem B above, we call algebras satisfying the conclusion of
Theorem A strongly Kadison-Kastler stable, algebras satisfying the conclusion of Theorem
B part (1) weakly Kadison-Kastler stable and algebras satisfying the conclusion of Theorem
B part (2) Kadison-Kastler stable. With this terminology, the appropriate forms of the
Kadison-Kastler conjecture are that von Neumann algebras are strongly Kadison-Kastler
stable and separable C∗-algebras are Kadison-Kastler stable.

Part (1) of Theorem B applies when Γ is a free group Fr, 2 ≤ r ≤ ∞, as these groups have
cohomological dimension one, so H2(Γ, L2(Z(P )sa)) = 0. In particular, the approximate
free group factors introduced in [70] as the first class of factors containing a unique Cartan
masa up to unitary conjugacy, have the form L∞(X) ⋊α Fr for some free ergodic measure
preserving profinite action α. Consequently, these factors are weakly Kadison-Kastler stable
by Part (1) of Theorem B. As shown in [70, Section 5], there are uncountably many pairwise
nonisomorphic factors in this class, including some examples with property Gamma. These
latter examples are Kadison Kastler stable by Part 2 of Theorem B.

In the rest of this introduction we set out the main ideas used to prove Theorems A
and B for crossed products P ⋊α Γ arising from centrally ergodic, properly outer and trace-
preserving actions α of countable discrete groups Γ on amenable finite von Neumann algebras
with separable preduals. Existing methods for isomorphisms between close operator algebras
used in [18, 21, 44, 89, 28] when one algebra is amenable rely heavily on perturbation results
for approximate homomorphisms. A pair of Banach algebras (A,B) has Johnson’s ‘AMNM’
property [46] when every approximately multiplicative bounded linear map A → B is near
to a multiplicative map. This property is an operator algebra version of Kazhdan’s work on
almost group representations [54] (see [10] for recent progress in this direction). The AMNM
approach to Kadison-Kastler stability results is to produce a bounded linear map between
close operator algebras using, for example, a conditional expectation onto an injective von
Neumann algebra, and then use the AMNM property to produce a nearby isomorphism.
Outside the amenable context it seems difficult to obtain such bounded linear maps and
so the approach that we adopt here is to construct directly an isomorphism from a crossed
product M onto a close von Neumann algebra N . Our strategy is to establish that algebras
N close to a crossed product II1 factor M = P ⋊α Γ can be written as twisted crossed
products arising from the same underlying action α via a 2-cocycle ω taking values in the
unitary group U(Z(P )). This cocycle ω will be uniformly close to the trivial cocycle, and so
one can take a logarithm to obtain a bounded 2-cocycle taking values in Z(P )sa. When this
cocycle represents the trivial class in H2(Γ,Z(P )sa), we obtain an isomorphism between M
and N . This is guaranteed to occur when the comparison map (1.1) vanishes, or when the
bounded cohomology group H2

b (Γ,Z(P )sa) vanishes.
In addition to the perturbation results for amenable von Neumann algebra from [18, 44,

89, 21], two existing perturbation results play a key role in this paper. The first of these
(from Kadison and Kastler’s original paper [51]) is that close von Neumann algebras have
close type decompositions. Of particular relevance here is [51, Theorem B] which shows
that if M is a II1 factor acting nondegenerately on H and N is another von Neumann
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algebra acting nondegenerately on H with d(M,N) < 1/8, then N is also a II1 factor. The
second key ingredient is an embedding theorem for near inclusions from [21]. Say that P is
nearly contained in N when operators from the unit ball of P can be closely approximated by
operators in N but no reverse assumption is made. The analogous conjecture in this situation
is that sufficiently small near inclusions of P into N arise from small unitary perturbations
of genuine inclusions and the embedding theorem ([21, Theorem 4.3]) establishes this when
P is amenable. Further, given such a near inclusion one can find a unitary implementing
such a small perturbation inside the von Neumann algebra generated by P and N .

When P is amenable and M = P ⋊α Γ is close to another von Neumann algebra N on
the Hilbert space H, we can apply the embedding theorem to the near containment of P
into N . This enables us to replace N by a small unitary perturbation N1 = u∗Nu of N
such that P ⊆ N1. The assumptions on the action α ensure that P ′ ∩ M ⊆ P and it is
easily checked that if N1 is close enough to M , then P ′ ∩ N1 ⊆ P . Writing (ug)g∈Γ for the
canonical unitaries in the crossed product M = P ⋊α Γ, we can approximate each ug by
a nearby unitary ṽg ∈ N1. The amenable algebras ṽgP ṽ

∗
g are each close to P inside N1,

so the perturbation results for amenable von Neumann algebras can be used to replace the
unitaries (ṽg)g∈Γ by unitaries (vg)g∈Γ in N1 which normalize P and implement the action α.
In this way (P ∪ {vg : g ∈ Γ}) will generate a von Neumann subalgebra of N1 isomorphic
to a twisted crossed product P ⋊α,ω Γ, where ω is a 2-cocycle given by ω(g, h) = vgvhv

∗
gh for

g, h ∈ Γ. This is the subject of Section 3.
In order to show that N1 is generated by P and (vg)g∈Γ, we construct special representa-

tions of M and N1 on a new Hilbert space K. Specifically, we reduce to the situation where
M and N1 are close von Neumann algebras on K with P ⊆M ∩N1, and both algebras are in
standard position. Moreover, we obtain two additional properties. The first is the existence
of a common trace vector ξ for M , M ′, N1 and N ′

1 that is then used to define the modular
conjugation operators JM and JN1

. The second is the equality of the two basic construction
algebras 〈M, eP 〉 and 〈N1, eP 〉. We are then able to work at the Hilbert space level to convert
questions about generation to questions about the orthogonal complement of

∑
g∈G Pvg on

K.
To reach this situation we first modify H to produce a new Hilbert space K with close

representations of M and N1 such that M is in standard position on K, in the sense that
the dimension dimM K of K as a left M-module is 1. To increase the dimension of H as
an M-module, we can replace H by an amplification H ⊗ H1 and M by M ⊗ IH1

and N1

by N1 ⊗ IH1
. To decrease the dimension of H as an M-module, we replace H by e(H) for

a suitable projection e in the commutant of M . Provided this projection is chosen near to
the commutant of N1, then we can replace N1 by a small unitary perturbation of N1 so that
e ∈ N ′

1: in this way we obtain close representations of M and N1 on e(H). The selection of
e is a little delicate, as while M and N1 are close on the original Hilbert space H, we cannot
generally assume that the commutants M ′ and N ′

1 are also close on H (see [11]). In Lemma
4.2.1 we show that such an e can nevertheless always be found, though it could be very small
in trace.

Once M lies in standard position on K, some ideas originating in [22] and [26] can be
used to see that the commutants M ′ and N ′

1 are close on K. This enables us to deduce
that N1 is almost in standard position on K in the sense that, as a left N1-module, the
dimension of K is approximately 1. Constructing the modular conjugation operator JM
with respect to a trace vector ξ for M and M ′, it follows that JMPJM is almost contained
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in N ′
1, so the embedding theorem enables us to make a further small unitary perturbation

of N1 so that JMPJM ⊆ N ′
1. By computing the trace of an operator in N1 through P via

the trace preserving conditional expectation from N1 onto P and then working in M , we
deduce that ξ is also tracial for N1. Taking commutants and working with the subalgebra
JMPJM ⊆ M ′ ∩N ′

1, it follows that ξ is also tracial for N ′
1. In the case that P is a maximal

abelian subalgebra of M , it is then easily checked that the basic constructions of P ⊆ M
and P ⊆ N1 are identical. In the general case, we use a theorem of Popa [79] to find suitable
masas forM and N1 inside P . At this stage of the argument it is essential that P ′∩M ⊆ P .
The situation where we assume that M is in standard position is the subject of Section 4.1
and in Section 4.2 we combine this with the reduction procedure of the previous paragraph.
In particular it follows that an algebra N sufficiently close to a crossed product M = P ⋊α Γ
can be written as a twisted crossed product N = P ⋊α,ω Γ for a cocycle ω uniformly close
to the trivial cocycle. The weak Kadison-Kastler stability results in part (1) of Theorem
B then follow directly; the details are set out in Section 6.1. The procedure of Section 4.2
also gives a general reduction result (Theorem 4.2.4) which shows that, for the purposes of
determining whether II1 factors are weakly Kadison-Kastler stable, it suffices to assume that
both factors lie in standard position on the same Hilbert space.

We now discuss how to ensure that the resulting isomorphism is always spatial (as required
in Theorem A and part (2) of Theorem B) and uniformly close to the inclusion map (as in
Theorem A and part (3) of Theorem B). These problems are intimately connected with
Kadison’s similarity problem for operator algebras from [49]. We say that a C∗-algebra has
the similarity property if every bounded homomorphism φ : A → B(H) is similar to a ∗-
homomorphism. The similarity problem is then to determine whether all C∗-algebras have
this property. Positive answers to this question are known for amenable algebras (see [7], for
example), traceless C∗-algebras [39], and also in the presence of a cyclic vector [39]. The most
general class of II1 factors for which the similarity property is known to hold are those II1
factors with Murray and von Neumann’s property Gamma [23]; the problem remains open
for other II1 factors. The main result of [26] shows that if A,B ⊆ B(H) are C∗-algebras,
such that A has the similarity property and B is sufficiently close to A (in terms of quantified
estimates on how well A satisfies Pisier’s length characterization of the similarity property
from [76]), then B has the similarity property. From this we obtain that A′ and B′ are close
on H and that matrices over A are uniformly close to matrices over B (independently of the
size of the matrix). In particular, ifM and N1 are close II1 factors on H andM has property
Gamma, then M ′ and N ′

1 are close on H. This enables us to make significant simplifications
to the reduction argument of Section 4.2. In particular it follows that dimM(H) = dimN1

(H)
and so if there exists an isomorphism θ between M and N1, then θ is automatically spatially
implemented on H. This is enough to prove part (2) of Theorem B, which is established as
Corollary 6.2.1.

In fact, the similarity property for a II1 factor M is equivalent to the following notion
of continuity for the operation of taking commutants: whenever M is normally unitally
represented on H and Nk ⊆ B(H), k ≥ 1, is a sequence of von Neumann algebras satis-
fying limk→∞ d(M,Nk) = 0, then limk→∞ d(M ′, N ′

k) = 0 [11]. In particular, every strongly
Kadison-Kastler stable factor must have the similarity property.

In Theorem B the difference between the vanishing of the comparison map (1.1) in part
(1) and the hypothesis that H2

b (Γ,Z(P )sa) = 0 in part (3) is that in the latter case we can
obtain an isomorphism θ from M = P ⋊α Γ onto a close subalgebra N with the property
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that

(1.2) ‖θ(xug)− xug‖

is small for x ∈ P with ‖x‖ ≤ 1 and each g ∈ Γ (where (ug)g∈Γ are the canonical group
unitaries), whereas when (1.1) vanishes we only learn that the cocycle ω arising in the
expression of N = P ⋊α,ω Γ is a coboundary ∂ν, but we do not have an estimate on how
close ν is to the trivial 1-cochain. Consequently, we cannot control the behavior of the
isomorphism between M and N on the canonical unitaries in this case.

One would expect that (1.2) is insufficient to ensure that ‖θ(m) − m‖ is small for all
m ∈M with ‖m‖ ≤ 1. However, working in the situation where P ⊆M ∩N and M and N
are simultaneously in standard position on a new space K such that P ⊆M and P ⊆ N have
the same basic construction algebra 〈M, eP 〉, the isomorphism θ is spatially implemented on
K by a unitary W ∈ P ′ ∩ 〈M, eP 〉. By decomposing W =

∑
g∈Γ wg(ugePu

∗
g) with respect to

the central projections (ugePu
∗
g)g∈Γ in P ′∩〈M, eP 〉 arising from the canonical Pimsner-Popa

basis, the assumption that θ(ug) ≈ ug for all g can be used to show that αh(w1Γ) ≈ wh for
all h ∈ Γ. It then follows that W ≈ JMw1ΓJM and this last unitary lies in P ′ ⊇ M ′ ∩N ′ so
W almost commutes with elements of M .

The methods described so far give strong Kadison-Kastler stability for a factor satisfying
both the hypotheses of parts (2) and (3) of Theorem B. However, as our principal example
SL3(Z) of a group with the required bounded cohomology condition has property T, it is
not possible to produce crossed product factors L∞(X, µ)⋊αSL3(Z) with property Gamma.
Instead we obtain our examples of strongly Kadison-Kastler stable factors by taking a tensor
product of L∞(X, µ)⋊α SL3(Z) and the hyperfinite II1 factor R in order to obtain property
Gamma. In section 5.2 we show that algebras close to McDuff factors (those of the form
M = M0⊗R) are again of this form, and further, we can arrange to factor an algebra N
close to M0⊗R as N0⊗R using the same copy of R and with N0 close to M0. This enables
the work described previously to be applied toM0 and N0 and prove Theorem A as Theorem
6.3.4. This is set out in Section 6.3.

The method of identifyingN as a twisted crossed product coming from the same underlying
action used to construct M , albeit with a possibly different cocycle, is also valid beyond the
crossed product setting. In [38], Feldman and Moore introduced the notion of a Cartan masa
in a von Neumann algebra to generalize the twisted version of Murray and von Neumann’s
group-measure space construction and showed that these are determined by a measured
equivalence relation and the orbit of a certain 2-cocycle. Our results enable us to see that
if A ⊆ M is an inclusion of a Cartan masa in a II1 factor, then any von Neumann algebra
N sufficiently close to M contains a Cartan masa B close to A. Further, the inclusions
A ⊆ M and B ⊆ N induce isomorphic measured equivalence relations and are given by
uniformly close 2-cocycles on these relations (see Subsection 6.4 and Proposition 6.4.2). In
particular, factors close to those with unique Cartan masas (see [70, 71, 14, 87, 88]) also
have unique Cartan masas. Our methods then give isomorphism results for close II1 factors
M = L∞(X, µ) ⋊ Γ and N = L∞(Y, ν) ⋊ Λ which both arise as crossed products in a
class which is known to have a unique Cartan masa. In particular, Popa and Vaes have
shown that this applies when Γ and Λ are both hyperbolic [88] (see [14] when the actions
are additionally assumed profinite), whereas general hyperbolic groups need not satisfy the
cohomological condition that the comparison map (1.1) vanishes.
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The paper is organized as follows. In order to make this paper as self-contained as possible,
we start with a background section which reviews the Kadison-Kastler metric, near inclusions
and the connection with the similarity problem, the basic construction, the twisted crossed
product construction and the bounded cohomology results which apply to SLn(Z) for n ≥ 3.
At this point we recall some prior estimates from the literature and establish some technical
lemmas. We also collect a number of easy estimates and some technical results for later use.
Section 3 is concerned with the process of transferring normalizers of amenable subalgebras.
We do this in a general setting designed to work beyond the context of crossed products.
Section 4 contains the procedure for representing two close II1 factors on a new Hilbert space
where both are in standard position, and other important properties of this reduction are
also obtained. Section 5 investigates structural properties of close II1 factors in the sprit
of the original paper [51]. Using the work of Sections 3 and 4, we show that a number of
key structural properties of the free group factors, including strong solidity, are inherited
by nearby factors, and then examine factors with property Gamma and McDuff factors.
Theorems A and B are established in Section 6 which also sets out how our work applies to
general Cartan masas through the lens of equivalence relations.
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2. Preliminaries

2.1. The Kadison-Kastler metric and near inclusions. We begin by recalling the defi-
nition of the Kadison-Kastler metric from [51] and by using it to give precise formulations of
the concept of Kadison-Kastler stability from the introduction. We state these definitions in
the context of von Neumann algebras, but they apply equally to C∗-algebras (replacing the
unital assumption by a nondegeneracy assumption), and to non self-adjoint algebras (where
spatial isomorphism should be interpreted in terms of conjugation by a similarity rather than
by a unitary).

Definition 2.1.1. Let M and N be von Neumann subalgebras of B(H). The Kadison-
Kastler distance d(M,N) between M and N is the infimum of those γ > 0 with the property
that, given an operator x in one of the unit balls of M or N , there exists y in the other unit
ball with ‖x− y‖ < γ.

Given two von Neumann algebrasM and N acting degenerately on H with d(M,N) small,
it is easy to show that the identities IM and IN are close in norm. Further, there exists a
unitary u ∈ W ∗(M∪N) with uIMu

∗ = IN so that ‖u−IH‖ is small (see [26, Proposition 3.2],
which sets this out with explicit estimates in the more general C∗-algebraic context). We
can then replace N by the algebra N1 = u∗Nu and work on the Hilbert space H1 = IM(H),
whereM and N1 act nondegenerately. Thus we can assume that close von Neumann algebras
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share the same unit and that this is the identity operator on the underlying Hilbert space.
We incorporate this assumption into the definitions below.

Definition 2.1.2. Let M be a von Neumann algebra.

(i) Say that M is strongly Kadison-Kastler stable if for all ε > 0, there exists δ > 0 such
that given any faithful unital normal representation M ⊆ B(H) and a von Neumann
algebra N ⊆ B(H) containing IH with d(M,N) < δ, then there exists a unitary
operator u on H with uMu∗ = N and ‖u− IH‖ < ε.

(ii) Say that M is Kadison-Kastler stable if there exists δ > 0 such that given a faithful
unital normal representation M ⊆ B(H) and a von Neumann algebra N ⊆ B(H) with
IH ∈ N such that d(M,N) < δ, then there exists a unitary operator u on H with
uMu∗ = N .

(iii) Say that M is weakly Kadison-Kastler stable if there exists δ > 0 such that given a
faithful unital normal representation M ⊆ B(H) and a von Neumann algebra N ⊆
B(H) with IH ∈ N such that d(M,N) < δ, then M and N are ∗-isomorphic.

We now turn to the concept of near inclusions from [21].

Definition 2.1.3. Let M,N ⊆ B(H) be von Neumann algebras. For γ > 0, write M ⊆γ N
if each x ∈ M can be approximated by some y ∈ N with ‖x − y‖ ≤ γ‖x‖. Write M ⊂γ N
when there exists γ′ < γ with M ⊆γ′ N .

Since the definition of a near inclusion above does not require that the approximating y
satisfies ‖y‖ ≤ ‖x‖, the near inclusionsM ⊂γ N andN ⊂γ M only imply that d(M,N) < 2γ.
Similarly

(2.1) M ⊂γ N ⊂δ P =⇒ M ⊂γ+δ+δγ P,

and so, while the infimum of those γ with M ⊂γ N and N ⊂γ M defines a notion of
distance between operator algebras equivalent to the Kadison and Kastler metric d, such a
notion does not appear to satisfy the triangle inequality. However, when one of the near
inclusions is obtained by conjugation by a unitary, we have a better estimate which will be
used repeatedly in the sequel:

(2.2) M ⊆γ N, u ∈ U(B(H)) =⇒ M ⊆γ+2‖u−I‖ uNu
∗.

This is obtained as follows. For x in the unit ball of M , choose y ∈ N with ‖x − y‖ ≤ γ.
Then ‖x− uyu∗‖ ≤ ‖x− uxu∗‖+ ‖u(x− y)u∗‖ ≤ 2‖u− I‖+ γ.

In [21] it is observed that near inclusions behave better than the metric d with respect to
operations like matrix amplifications and taking commutants (see Proposition 2.1.6 below).
To avoid the repeated losses in converting from near inclusions to distance estimates, we shall
state technical results using hypotheses of the form M ⊂γ N and N ⊂γ M , but formulate
the main results of the paper using the Kadison-Kastler metric d.

In Section 3, we will need to be able to take commutants of a sufficiently small near
inclusion M ⊆γ N to obtain a reverse near inclusion N ′ ⊆γ′ M ′. This can be done with
constants independent of the underlying Hilbert space H if and only if M has the similarity
property [11]. Without the similarity property, this can be achieved on a given Hilbert space
H when M has a finite set of cyclic vectors for H, with constants depending on the size of a
cyclic set [22]. This proceeds by using the noncommutative Grothendieck inequality to show
that, in the presence of a cyclic vector, bounded derivations are automatically completely
bounded. We give an alternative proof of this fact below, which refines these ideas to
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give improved constants (our main results use these estimates repeatedly so this leads to a
significant improvement in our final bounds). We start by isolating a technical lemma.

Lemma 2.1.4. Let M ⊆ B(H) be a von Neumann algebra such that H has a cyclic vector
for M . Then, for every derivation δ :M → B(H), we have

(2.3) ‖δ‖cb ≤ 2‖δ‖row,
where ‖δ‖row denotes the row norm of δ, given by ‖δ‖row = supn,r ‖δ1×n(r)‖, where the
supremum is taken over contractions r ∈ M1×n(M).

Proof. Let n ∈ N and x ∈ Mn(M). Since M has a cyclic vector for B(H), we have

(2.4) ‖δn(x)‖ = sup {‖rδn(x)‖ : r ∈ M1×n(M), ‖r‖ ≤ 1},
by [78, Lemma 2.4 (i) =⇒ (iv) and Theorem 2.7]. For a 1 × n row matrix r over M with
‖r‖ ≤ 1, the relation rδn(x) = δ1×n(rx)− δ1×n(r)x leads to the estimate

(2.5) ‖rδn(x)‖ = ‖δ1×n(rx)− δ1×n(r)x‖ ≤ 2‖δ‖row‖x‖.
Combining (2.4) and (2.5) gives ‖δn(x)‖ ≤ 2‖δ‖row, from which the result follows. �

An operator T ∈ B(H) induces a derivation S 7→ TS − ST on B(H) denoted ad(T ).
Arveson’s distance formula from [3] (see [19, Proposition 2.1] for the formulation we use)
shows that for a von Neumann algebra M ⊆ B(H) and T ∈ B(H),

(2.6) d(T,M ′) =
1

2
‖ad(T )|M‖cb .

In the proof below we use [94, Proposition 4.2]. We take this opportunity to correct an
oversight in the statement of this result, which omitted the hypothesis that M is finite
(which is required in order to appeal to [25, Theorem 2.3] in the proof of [94, Proposition
4.2]). It is for this reason we have to handle the finite and properly infinite cases separately
below. It would be interesting to find the best constant in (2.7).

Lemma 2.1.5. Let M ⊆ B(H) be a von Neumann algebra with a cyclic set of m vectors (in
the sense that there exist ξ1, . . . , ξm ∈ H such that Span{xiξi : xi ∈ M 1 ≤ i ≤ m} is dense
in H). If δ :M → B(H) is a bounded derivation, then δ is completely bounded and

(2.7) ‖δ‖cb ≤ 2(1 +
√
2)m‖δ‖.

Proof. We first look at the case when m = 1 and M has a separable predual. By [22,
Corollary 3.2], and Arveson’s distance formula (2.6) it suffices to prove the result for when
δ is of the form ad(T )|M for a fixed T ∈ B(H).

Let p be the central projection in M such that M0 = Mp is finite and M1 = M(1 − p) is
properly infinite. Since M0 has separable predual, results of Popa from [79] can be used to
choose an amenable von Neumann algebra P0 ⊆ M0 with P ′

0 ∩M0 = Z(M0) (when M0 is a
II1 factor this is [79, Corollary 4.1], the extension to the case when M0 is II1 can be found
in [95, Theorem 8], and the general case is obtained by splitting M0 as a direct sum of its
II1 part and its finite type I part, which is already amenable). Let P1 be a properly infinite
amenable von Neumann subalgebra of M1 and let P = (P0∪P1)

′′, which is an amenable von
Neumann subalgebra of B(H) containing p.

Since P is amenable, we can find S in the weak∗ closed convex hull cow{uTu∗ : u ∈ U(P )}
such that S ∈ P ′. By construction (see [19, Section 2]) ‖ad(S)|M‖ ≤ ‖ad(T )|M‖ and
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‖S − T‖ ≤ ‖ad(T )|M‖. Further, just as in [19, Theorem 2.4], {S(1− p), (1− p)S∗}′ ∩M1 is
properly infinite so

(2.8) ‖ad(S(1− p))|M1
‖ = 2d(S(1− p),M ′

1) = ‖ad(S(1− p))|M1
‖cb

by [19, Corollary 2.2]. The map ad(Sp)|M0
is a P0-module map M0 → B(p(H)) and so by

[94, Theorem 4.2], ad(Sp)|M0
is row bounded with row norm

(2.9) ‖ad(Sp)|M0
‖row ≤

√
2‖ad(Sp)|M0

‖.
Combining (2.8) and (2.9), ad(S)|M is row bounded and

(2.10) ‖ad(S)|M‖row ≤
√
2‖ad(S)|M‖.

By Lemma 2.1.4, ad(S)|M is completely bounded and

(2.11) ‖ad(S)|M‖cb ≤ 2
√
2‖ad(S)|M‖ ≤ 2

√
2‖ad(T )|M‖.

Since ‖T − S‖ ≤ ‖ad(T )|M‖, we have

‖ad(T )|M‖cb ≤ ‖ad(S)|M‖cb + ‖ad(T − S)|M‖cb
≤ 2

√
2‖ad(T )|M‖+ 2‖T − S‖ ≤ 2(1 +

√
2)‖ad(T )|M‖,(2.12)

proving the result in the case when m = 1 and M has separable predual.
We now retain the assumption that M has a cyclic vector ξ but no longer require M

to have separable predual. Given a bounded derivation δ : M → B(H), we argue by
contradiction, so suppose that ‖δ‖ = 1 but there is an n × n matrix x0 ∈ Mn ⊗ M of
norm 1 with entries from M so that ‖δn(x0)‖ > 2(1 +

√
2). Let A0 be the separable C∗-

subalgebra of M generated by the entries of x0 and the identity operator. There exists a
finite dimensional subspace H0 of H such that, if p0 is the orthogonal projection from H

onto H0, then ‖(In⊗p0)δn(x0)(In⊗p0)‖ > 2(1+
√
2). Since ξ is a cyclic vector forM on H,

we can find a separable C∗-subalgebra A1 of M with A0 ⊆ A1 such that A1ξ ⊇ H0. Write
p1 for the orthogonal projection from H onto A1ξ. Now inductively construct a sequence
A1 ⊆ A2 ⊆ . . . of separable C∗-algebras and projections pn ∈ A′

n from H onto Anξ so that
x 7→ xpn is faithful on An−1. Let A be the direct limit of this sequence, and p ∈ A′ be
the projection onto Aξ. Then A is separable, and x 7→ xp is faithful on A (as this map is
isometric on each An).

We can define a derivation δ̂ : Ap → B(K) by δ̂(ap) = pδ(a)p. This is well defined and

contractive (as x 7→ xp is faithful on A) and δ̂ extends with the same norm to a derivation,

also denoted δ̂, defined on the ultraweak closure N of Ap by [50, Lemma 3], see also [93,
Theorem 2.2.2] (this result is stated for derivations taking values in Ap, but the proofs
given in these references work for derivations taking values in B(K)). By construction, N
has separable predual (since K is separable) and a cyclic vector ξ. From the first part of

the proof we conclude that ‖δ̂‖cb ≤ 2(1 +
√
2). In particular, ‖(In ⊗ p)δn(x0)(In ⊗ p)‖ =

‖δ̂n(x0)‖ ≤ 2(1 +
√
2), giving the required contradiction.

The situation where M has a cyclic set of m vectors can be reduced to the case of a single
cyclic vector by tensoring by Mm, see [26, Proposition 2.6]. �

In the context of near inclusions, the previous lemma has the following form.

Proposition 2.1.6. Let M be a von Neumann algebra acting on a Hilbert space H and
suppose that M has a finite cyclic set of m vectors for H. Then:
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(i) For T ∈ B(H), we have

(2.13) inf{‖T − S‖ : S ∈M ′} ≤ (1 +
√
2)m‖ad(T )|M‖.

(ii) Given another von Neumann algebra N on H withM ⊆γ N , we have N ′ ⊆2(1+
√
2)mγ M

′.

Note that by taking a weak∗-limit point, the infimum on the left hand side in (2.13) is
attained.

Proof. Part (i) follows from Lemma 2.1.5 and Arveson’s distance formula in (2.6) above. For
(ii), note that if N is another von Neumann algebra on H with M ⊆γ N , then for T ∈ N ′

the near inclusion M ⊂γ N gives the estimate ‖ad(T )|M‖ ≤ 2‖T‖γ (see the proof of [21,
Theorem 3.1]). The result now follows from (i). �

2.2. The completely bounded Kadison-Kastler metric. A completely bounded version
of the Kadison-Kastler metric has existed implicitly since [21], and explicitly appears in
[26, 90]. As the basic properties of this metric have not been set out we do this below.

Definition 2.2.1. Let A,B ⊆ B(H) be operator algebras. Write

(2.14) dcb(A,B) = sup
n≥1

d(A⊗Mn, B ⊗Mn).

For γ > 0, write A ⊆cb,γ B if A⊗Mn ⊆γ B ⊗Mn for all n ∈ N and A ⊂cb,γ B if there exists
γ′ < γ with A ⊆cb,γ′ B.

The following properties follow quickly from these definitions and existing theory.

Properties 2.2.2. (i) The inequalities

inf {γ > 0 : A ⊂cb,γ B, B ⊂cb,γ A}
≤dcb(A,B) ≤ 2 inf {γ > 0 : A ⊂cb,γ B, B ⊂cb,γ A}(2.15)

follow, just as for the original metric.
(ii) If A and B are C∗-algebras, with A ⊂cb,γ B, then for any nuclear C∗-algebra D, an

argument using the completely positive approximation property as in [21, Theorem 3.1]
yields A⊗D ⊂cb,γ B ⊗D.

(iii) Let M,N ⊆ B(H) be von Neumann algebras with M ⊂cb,γ N , and let S be any
amenable von Neumann algebra. Applying (ii) to any weak∗ dense nuclear C∗-algebra
D ⊆ S and using the Kaplansky density argument of [51, Lemma 5] gives M ⊗S ⊂cb,γ

N ⊗S. In particular M ⊗B(K) ⊂cb,γ N ⊗B(K).

Arveson’s distance formula [3] shows that completely close algebras have completely close
commutants.

Proposition 2.2.3. Let A and B be C∗-algebras acting nondegenerately on a Hilbert space
H with A ⊆cb,γ B. Then B′ ⊆cb,γ A

′. In particular, if dcb(A,B) ≤ γ, then dcb(A
′, B′) ≤ 2γ.

Proof. Given n ∈ N and T ∈ B(H ⊗ Cn), recall that the statement of Arveson’s distance
formula in (2.6) shows that the distance from T to (A⊗ CIn)

′ = A′ ⊗Mn is given by

(2.16) d(T,A′ ⊗Mn) =
1

2
‖ad(T )|A⊗CIn‖cb .



12 CAMERON ET. AL.

Now suppose that T ∈ B′ ⊗Mn. Given x ∈ A⊗Mn ⊗Ms
∼= A⊗Mns, choose y ∈ B ⊗Mns

with ‖x− y‖ ≤ γ‖x‖. Then
‖(ad(T )|A⊗Mn

⊗ idMs
)(x)‖ = ‖ad(T ⊗ Is)(x)‖

≤ 2‖T ⊗ Is‖‖x− y‖ ≤ 2‖T‖γ‖x‖.(2.17)

In particular, this holds for x ∈ A ⊗ CIn ⊗Ms, and so (2.16) gives d(T,A′ ⊗Mn) ≤ ‖T‖γ,
as claimed.

The second statement is an immediate consequence of the previous paragraph and Prop-
erties 2.2.2 (i). �

A von Neumann algebra M is said to have property D∗
k for some k > 0 if, for every

faithful normal unital representation π : M → B(H) we have d(T, π(M)′) ≤ k‖ad(T )|π(M)‖
for T ∈ B(H). When M is a II1 factor, the existence of such a k is equivalent to the
similarity property (this combines [57], and the folklore result that it suffices to consider
normal derivations and representations in the derivation problem and similarity problem
for II1 factors respectively). Further, it dates back to [21] that property D∗

k enables one
to take commutants of near inclusions of von Neumann algebras. Here we note that this
argument automatically gives completely bounded near inclusions of commutants and record
the estimates in the context of property Gamma factors for later use.

Proposition 2.2.4. Let M,N ⊆ B(H) be von Neumann algebras acting nondegenerately on
H.

(i) Suppose that M has property D∗
k for some k > 0 and M ⊆γ N for some γ > 0. Then

N ′ ⊆cb,2kγ M
′ and M ⊆cb,2kγ N .

(ii) Suppose that M is a II1 factor with property Gamma and M ⊆γ N for some γ > 0.
Then N ′ ⊆cb,5γ M

′ and M ⊆cb,5γ N .

Proof. (i). Fix n ∈ N and T ∈ N ′ ⊗ Mn ⊆ B(H ⊗ Cn). Applying property D∗
k to the

amplification M ⊗ In acting on H ⊗ Cn, we see that d(T,M ′ ⊗ Mn) ≤ k‖ad(T )|M⊗In‖ ≤
2kγ‖T‖ (where the last estimate arises from M ⊆γ N just as in [21, Theorem 3.1]). Thus
N ′ ⊆cb,2kγ M

′ and so M ⊆cb,2kγ N by Proposition 2.2.3.
(ii). This now follows immediately as II1 factors with property Gamma have length at

most 5 and length constant (at length 5) 1 by [77, Theorem 13] and hence property D∗
5/2 (see

[76, Remark 4.7] and [26, Section 2] which show that these conditions imply the stronger
property D5/2 in which we do not restrict to normal representations). �

Remark 2.2.5. The similarity degree, and hence length, of a II1 factor with property
Gamma is 3 ([24]), but at present we do not know how to use this result to improve the
estimates in Proposition 2.2.4.

The similarity property, in its derivation form, can also be used to show that small iso-
morphisms are necessarily spatially implemented. The first part of the lemma below is
obtained by making minor changes to the proof of [19, Proposition 3.2] (which handles the
case of properly infinite von Neumann algebras using property D∗

3/2, and McDuff factors

using property D∗
5/2). As property Gamma factors have property D∗

5/2, the second statement
is an immediate consequence of the first.

Lemma 2.2.6. [19] Let M be von Neumann algebra acting nondengenerately on H and
suppose that θ :M → B(H) is a ∗-homomorphism with ‖θ(x)− x‖ ≤ γ‖x‖ for x ∈M .
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(i) Suppose that M has property D∗
k for some k ≥ 1 and that γ < 1/k. Then there exists

a unitary u on H such that θ = Ad(u) and

(2.18) ‖IH − u‖ ≤ 21/2kγ
(
1 + (1− (kγ)2)1/2

)−1/2 ≤ 21/2kγ.

(ii) Suppose that M has property Gamma and that γ < 2/5. Then there exists a unitary u
on H such that θ = Ad(u) and ‖IH − u‖ ≤ 2−1/25γ.

2.3. Standard position, the basic construction and coupling constants. Let M be
a II1 factor on a Hilbert space H, and let τ (or τM when it is necessary to indicate the
underlying factor M) denote the unique normal normalized trace on M . If M has a finite
commutant on H and there is a vector ξ ∈ H which is tracial for M and M ′ in the sense
that the vector state 〈·ξ, ξ〉 gives the traces on both M and M ′, then M is said to be in
standard position. Having specified a tracial vector ξ for M in standard position, there is a
conjugate linear isometry J (or JM when we need to emphasize its relation toM) defined by
extending J(mξ) = m∗ξ to H. This is called the conjugation operator, and has the property
that JMJ = M ′. Note that if M is in standard position on H, then any trace vector ξ for
M is automatically tracial for M ′.

If M is in standard position on H with a specified tracial vector ξ and P ⊆ M is any
von Neumann subalgebra, then eP denotes the projection onto Pξ. The basic construction
is then defined to be (M ∪ {eP})′′ and is denoted by 〈M, eP 〉. This algebra dates back to
[98] and [20], but was first used systematically in the work of Jones [47]. For later use, we
list a few standard properties of the basic construction below which can be found in [47] or
standard references (such as [48]) and then record a technical lemma.

Properties 2.3.1. With the notation above:

(i) eP = JePJ ;
(ii) eP commutes with P and P =M ∩ {eP}′;
(iii) 〈M, eP 〉′ = JMPJM ;
(iv) The map p 7→ peP , p ∈ P , is an algebraic isomorphism, and consequently isometric;
(v) For each x ∈ M , ePxeP = EM

P (x)eP , where E
M
P denotes the unique trace preserving

conditional expectation from M onto P .

Lemma 2.3.2. LetM be a II1 factor with separable predual, in standard position on a Hilbert
space H with tracial vector ξ. Let P be a von Neumann subalgebra of M satisfying P ′∩M ⊆
P . Given a unitary v ∈ P ′∩〈M, eP 〉, there exists a unique unitary u ∈ P ′∩M = Z(P ) such
that vξ = uξ.

Proof. By [35, Lemma 3.2], eP is central in P ′∩〈M, eP 〉, and so veP = eP veP . Now eP veP ∈
PeP and so there exists an element u ∈ P such that eP veP = ueP . Since ‖eP veP‖ ≤ 1, it
follows that ‖u‖ ≤ 1. Additionally,

(2.19) vξ = veP ξ = eP veP ξ = ueP ξ = uξ,

and so ‖uξ‖H = ‖vξ‖H = 1. Combining this with ‖u‖ ≤ 1, we see that u is a unitary since
IH − u∗u ≥ 0 and has zero trace. If y ∈ P is arbitrary, then

(2.20) uyξ = uyePξ = ueP yξ = eP veP yξ = yePveP ξ = yueP ξ = yuξ,

since v and eP commute with y. Since ξ is a separating vector for M , uy = yu and so
u ∈ P ′ ∩M = Z(P ). The separating property of ξ also ensures that u is unique. �
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The coupling constant of a nondegenerate action of a II1 factor M on a Hilbert space H

dates back to Murray and von Neumann [66, Definition 3.3.1] and was subsequently used
by Jones to define the index of a subfactor [47]. Given a nonzero vector η ∈ H, write
eMη for the projection in M ′ onto the subspace Mη and eM

′

η for the projection in M onto

M ′η. If M ′ is also a finite factor, with faithful normalized trace τM ′ , then the quantity
dimM(H) = τM(eM

′

η )/τM ′(eMη ) is independent of the choice of nonzero η ∈ H (see [33, Part
III Chapter 6] for example) and referred to as the coupling constant of M on H or the M-
dimension of H. When M ′ is a II∞ factor, set dimM(H) = ∞. We recall some properties of
the M-dimension from [33, Part III Chapter 6].

Properties 2.3.3. Let M be a II1 factor acting nondegenerately on H.

(i) If p′ is a projection in M ′, then dimMp′(p
′H) = τM ′(p′) dimM(H).

(ii) If p is a projection in M , then dimpMp(pH) = dimM(H)/τM(p).
(iii) M acts in standard position on H if and only if dimM(H) = 1.
(iv) If dimM(H) ≥ 1, then there is a tracial vector ξ ∈ H for M , in the sense that τM(x) =

〈xξ, ξ〉 for all x ∈M .
(v) If dimM(H) ≤ m ∈ N, then there is a set of m-cyclic vectors for M on H.

2.4. Some approximation estimates. We need some standard results for approximating
unitaries and projections in the sequel. Lemma 2.4.1 is a consequence of [56, Lemma 1.10]
(it follows by noting that the function α(t) used there satisfies α(t) ≤

√
2t for 0 ≤ t < 1),

and Lemma 2.4.2 is the usual estimate in the Murray-von Neumann equivalence of close
projections (see [64, Lemma 6.2.1] for example).

Lemma 2.4.1. Suppose that γ < 1 and let M ⊂γ N be a near inclusion of von Neumann
algebras sharing the same unit.

(i) Given a unitary u ∈M , there exists a unitary v ∈ N with ‖u− v‖ <
√
2γ.

(ii) Given a projection p ∈M , there exists a projection q ∈ N with ‖p− q‖ < 2−1/2γ.

Lemma 2.4.2. Let p and q be projections in a von Neumann algebra M with ‖p− q‖ < 1.
Then there exists a unitary u ∈M with upu∗ = q and ‖u− IM‖ ≤

√
2‖p− q‖.

Lemma 3.6 of [26] examined the center-valued traces on close finite von Neumann algebras.
The next lemma gives improved estimates in the special case of close II1 factors.

Lemma 2.4.3. Let M and N be II1 factors acting nondegenerately on a Hilbert space H

and satisfying M ⊂γ N ⊂γ M for a constant γ < 2−3/2. Let P ⊆ M ∩ N be a diffuse von
Neumann algebra containing IH. Then τM |P = τN |P .
Proof. Let p1 ∈ P satisfy τM(p1) = 1/2, and choose a unitary v ∈ M so that vp1v

∗ = IH−p1.
By Lemma 2.4.1 (i) we may choose a unitary u ∈ N so that ‖v − u‖ ≤

√
2γ. Then

(2.21) ‖vp1v∗ − up1u
∗‖ ≤ 2‖v − u‖ ≤ 2

√
2γ < 1

by the choice of the bound on γ. Thus up1u
∗ and IH − p1 are equivalent projections in N so

τN (p1) = τN (up1u
∗) = τN(IH − p1), proving that τN (p1) = 1/2.

Now consider p2 ∈ P with τM(p2) = 1/22 and choose p1 ∈ P so that p2 ≤ p1 and τM(p1) =
1/2. Since τN(p1) = 1/2, the normalized traces on p1Mp1 and p1Np1 are respectively 2τM
and 2τN . Applying the argument above to p2 ∈ p1Pp1 ⊆ (p1Mp1) ∩ (p1Np1), noting that
p1Mp1 ⊂γ p1Np1 ⊂γ p1Mp1, gives τM(p2) = τN(p2) = 1/22. We may continue inductively
to obtain that τM(pn) = τN(pn) for any projection pn ∈ P with τM (pn) = 1/2n, n ≥ 1. The
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span of such projections is weak∗-dense in P , so the result follows from normality of the
traces. �

Lemma 2.4.4. Let M and N be II1 factors acting nondegenerately on a Hilbert space H

with M ⊂γ N for some γ < 1. Let Φ be a state on B(H) extending τN . Then

(2.22) |τM(x)− Φ(x)| ≤ (2 + 2
√
2)γ‖x‖ < 5γ‖x‖, x ∈M \ {0}.

Proof. Fix x in the unit ball of M and a unitary u ∈ M . Choose y ∈ N with ‖x − y‖ ≤ γ
and, by Lemma 2.4.1 (i), a unitary v ∈ N with ‖u− v‖ <

√
2γ. Then

‖uxu∗ − vyv∗‖ = ‖uxu∗ − vxv∗ + v(x− y)v∗‖
≤ ‖v∗ux− xv∗u‖+ ‖x− y‖
≤ 2‖v∗u− IH‖+ ‖x− y‖
= 2‖u− v‖+ ‖x− y‖ ≤ (2

√
2 + 1)γ,(2.23)

and so

|Φ(uxu∗)− Φ(x)| ≤ |Φ(uxu∗)− Φ(vyv∗)|+ |Φ(vyv∗)− Φ(y)|+ |Φ(y)− Φ(x)|
< (1 + 2

√
2)γ + γ = (2 + 2

√
2)γ < 5γ,(2.24)

since Φ(vyv∗) = τN (vyv
∗) = τN(y) = Φ(y). The Dixmier approximation theorem (see [53,

Theorem 8.3.5]) shows that τM(x)IH is a norm limit of convex combinations of elements of
the form uxu∗. The estimate (2.22) follows immediately. �

In a similar vein to the previous lemma, close inclusions inside II1 factors have close relative
commutants (see [19, Proposition 2.7] which states Lemma 2.4.5 when M = N). Recall that
if P is a unital von Neumann subalgebra of a II1 factor M , then the unique τM -preserving
conditional expectation EM

P ′∩M from M onto P ′ ∩M satisfies the condition that EP ′∩M(x)
is the unique element of minimal ‖ · ‖2-norm in the ‖ · ‖2-norm closure of the convex set
co{uxu∗ : u ∈ U(P )} ⊆ L2(M) for each x ∈M (see [96, Lemma 3.6.5 (i)], for example).

Lemma 2.4.5. Let M and N be II1 factors acting nondegenerately on a Hilbert space H

and suppose that P ⊆M and Q ⊆ N are unital von Neumann subalgebras.

(i) Suppose that M ⊆γ N and Q ⊆δ P . Then P
′ ∩M ⊆2

√
2δ+γ Q

′ ∩N .
(ii) Suppose that M ⊆cb,γ N and Q ⊆δ P . Then P

′ ∩M ⊆
cb,2

√
2δ+γ Q

′ ∩N .

Proof. (i). Given x ∈ P ′ ∩M with ‖x‖ ≤ 1 choose y ∈ N with ‖x− y‖ ≤ γ. For a unitary
v ∈ Q use Lemma 2.4.1 (i) to find a unitary u ∈ P with ‖u − v‖ ≤

√
2δ. Noting that

uxu∗ = x, we obtain the estimate

‖vyv∗ − x‖ ≤ ‖vyv∗ − vxv∗‖+ ‖vxv∗ − uxu∗‖
≤ ‖y − x‖ + 2‖v − u‖ ≤ γ + 2

√
2δ.(2.25)

Since EQ′∩N(y) is a strong operator limit of convex combinations of elements vyv∗ for uni-

taries v ∈ Q, it follows that ‖EQ′∩N(y)− x‖ ≤ 2
√
2δ + γ, as required.

(ii). Fix n ∈ N. We have P ⊗ CIn ⊆ M ⊗ Mn and Q ⊗ CIn ⊆ N ⊗ Mn and the near
inclusions M ⊗Mn ⊆γ N ⊗Mn , P ⊗ CIn ⊆δ Q⊗ CIn. By part (i) we have

(2.26) (P ′∩M)⊗Mn = (P⊗CIn)
′∩(M⊗Mn) ⊆γ+2

√
2δ (Q⊗CIn)

′∩(N⊗Mn) = (Q′∩N)⊗Mn.

Since n was arbitrary, the completely bounded near inclusion P ′ ∩ M ⊆
cb,2

√
2δ+γ Q′ ∩ N

holds. �
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2.5. Group cohomology and crossed products. Recall that if α : Γ y X is an action
of a countable discrete group Γ on an abelian group X , then we have a cochain complex
Cn(Γ, X) = {f : Γn → X} with coboundary map ∂ : Cn(Γ, X) → Cn+1(Γ, X) given by

∂(f)(g0, . . . , gn) =αg0(f(g1, . . . , gn)) +

n−1∑

i=0

(−1)i+1f(g0, . . . , gi−1, gigi+1, gi+2, . . . , gn)

+ (−1)n+1f(g0, . . . , gn−1), f ∈ Cn(Γ, X), g0, . . . , gn ∈ Γ,(2.27)

inducing the cohomology groups H•(Γ, X). These are defined as follows. The map φ ∈
Cn(Γ, X) is an n-cocycle if ∂φ = 0, while it is an n-coboundary if there exists ψ ∈ Cn−1(Γ, X)
so that φ = ∂ψ. The spaces of n-cocycles and n-coboundaries are denoted respectively
Zn(Γ, X) and Bn(Γ, X), and the nth cohomology group is defined as Zn(Γ, X)/Bn(Γ, X).
When X is a normed vector space, the bounded cochains

(2.28) Cn
b (Γ, X) = {f ∈ Cn(Γ, X) : ‖f‖ = sup

g1,...,gn∈Γ
‖f(g1, . . . , gn)‖ <∞}

define a subcomplex of C•(Γ, X) which gives rise to the bounded cohomology groupsH•
b (Γ, X).

When X is a Banach space and the bounded cohomology group Hn
b (Γ, X) vanishes, the open

mapping theorem shows that there exists a constant K > 0, with the following property:

(2.29) ∀ψ ∈ Zn
b (Γ, X), ∃φ ∈ Cn−1

b (Γ, X) such that ψ = ∂φ and ‖φ‖ ≤ K‖ψ‖.
The cohomology groups of relevance to this paper arise from the action α : Γ y P of a

countable discrete group Γ on a von Neumann algebra P with a separable predual. This
restricts to an action of Γ on the abelian group U(Z(P )) of unitaries in the center of P and so
we can consider H2(Γ,U(Z(P ))). Concretely, a function ω : Γ× Γ → Z(U(P )) is a 2-cocycle
if

(2.30) αg(ω(h, k))ω(gh, k)
∗ω(g, hk)ω(g, h)∗ = IP , g, h, k ∈ Γ.

Two 2-cocycles ω and ω′ are cohomologous if they differ by a coboundary, in the sense that
there exists ν : Γ → U(Z(P )) with

(2.31) ω′(g, h) = αg(ν(h))ν(gh)
∗ν(g)ω(g, h), g, h ∈ Γ.

The second cohomology group H2(Γ,U(Z(P ))) consists of the equivalence classes of the
group Z2(Γ,U(Z(P ))) of 2-cochains under the relation of being cohomologous. Recall that a
2-cocycle ω is normalized if ω(g, h) is trivial when either g = e or h = e and every 2-cocycle
is cohomologous to a normalized 2-cocycle, so there is no loss of generality in restricting to
normalized cocycles.

Given a 2-cocycle ω ∈ Z2(Γ,U(Z(P ))), the twisted crossed product von Neumann algebra
P ⋊α,ω Γ is a von Neumann algebra generated by a unital copy of P and unitaries (ug)g∈Γ
for which there is a faithful normal conditional expectation E : P ⋊α,ω Γ → P and for which
the conditions

ugxu
∗
g = αg(x), x ∈ P, g ∈ Γ,(2.32)

uguh = ω(g, h)ugh, g, h ∈ Γ,(2.33)

E(ug) = 0, g ∈ Γ, g 6= e,(2.34)

hold. If in addition ω is normalized, then ue is the identity operator. The crossed product
is usually constructed concretely starting from a faithful representation of P , but for our
purposes all that matters is that these algebras are characterized by conditions (2.32) and
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(2.34) above with the cocycle being obtained by (2.33) (see [15, 100] for example). The
isomorphism class of the crossed product only depends on the cohomology class of the cocycle
ω. We sketch these well known facts below.

Proposition 2.5.1. Let α : Γ y P be a trace-preserving action of a countable discrete group
on a finite von Neumann algebra P with a separable predual and let ω ∈ Z2(Γ,U(Z(P ))).

(i) Suppose that a finite von Neumann algebra M is generated by a unital copy of P and
unitaries (ug)g∈Γ with ue = IP and there is a faithful normal trace-preserving expectation
EM

P : M → P so that (2.32), (2.34) hold and uguh ∈ Z(P )ugh for g, h ∈ Γ (this last
condition is automatic if P ′ ∩M ⊆ P ). Then M is ∗-isomorphic to P ⋊α,ω Γ where ω
is a normalized 2-cocycle given by (2.33). Further, an isomorphism can be found which
identifies the two copies of P and maps the unitaries ug in M to the canonical unitaries
in the crossed product P ⋊α,ω Γ.

(ii) If ω, ω′ ∈ Z2(Γ,U(Z(P ))) are cohomologous, then P ⋊α,ω Γ and P ⋊α,ω′ Γ are ∗-
isomorphic.

Sketch of the proof. (i). Note that by (2.32) uhugxu
∗
gu

∗
h = ughxu

∗
gh for all x ∈ P so that

u∗ghuguh ∈ P ′ ∩M . Thus if P ′ ∩M ⊆ P , then uguh ∈ Z(P )ugh for all g, h ∈ Γ.
Now let U0 be the subgroup of U(M) generated by the ug’s and U(Z(P )). Then U(Z(P ))

is normal in U0. Define ω(g, h) = uguhu
∗
gh which lies in U(Z(P )) by the assumption that

uguh ∈ Z(P )ugh. This last assumption, the fact that ue = IP and condition (2.34) can be
used to show that for g ∈ Γ the cosets ugU(Z(P )) are distinct. Thus the quotient U0/U(Z(P ))
can be canonically identified with Γ giving rise to the extension

(2.35) 1 → U(Z(P )) →֒ U0
q→ Γ → 1

which induces the action α on U(Z(P )) by (2.32). Since g 7→ ug is a set theoretic right
inverse of the quotient map q, it follows that ω is a normalised 2-cocycle (see [6, Chapter
IV]).

Now represent M in standard position on L2(M) and P ⋊α,ω Γ in standard position on
L2(P ) ⊗ ℓ2(Γ). The relation (2.32) shows that the collection M0 of finite sums

∑
g∈Γ xgug

with xg ∈ P is dense in M . Further, as EM
P is a trace-preserving conditional expectation

satisfying (2.34), the map U0 :M0 → P ⋊α,ω Γ given by U0(
∑

g∈Γ xgug) =
∑

g∈Γ xgvg (where

(vg)g∈Γ are the canonical unitaries in P ⋊α,ω Γ) is 2-norm isometric. Thus we can extend
U0 to a unitary operator U : L2(M) → L2(P ) ⊗ ℓ2(Γ). It is then readily checked that
UMU∗ = P ⋊α,ω Γ and Ad(U) has the desired properties.

(ii). Suppose that ω, ω′ ∈ Z2(Γ,U(Z(P ))) are cohomologous via ν : Γ → U(Z(P ))
satisfying (2.31). Let (ug)g∈Γ be the canonical unitaries in P ⋊α,ω Γ and define vg =
ν(g)ug ∈ U(P ⋊α,ω Γ). It is easy to see that P ⋊α,ω Γ is generated by (P ∪ {vg : g ∈ Γ}),
vgxv

∗
g = αg(x) for x ∈ P , EP (vg) = 0 for g 6= e and vgvhv

∗
gh = ω′(g, h). By the previous part

P ⋊α,ω Γ = P ⋊α,ω′ Γ. �

If the the unitary-valued cocycles used to define twisted crossed products contain a com-
mon spectral gap, then we can take a logarithm to obtain bounded cocycles. The easy lemma
below collects this fact for later use.

Lemma 2.5.2. Suppose that α : Γ y P is a trace preserving action of a discrete group on
a finite von Neumann algebra P with a separable predual. Let ω ∈ Z2(Γ,U(Z(P ))) satisfy
supg,h∈Γ ‖ω(g, h)− IP‖ <

√
2.
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(i) The expression ψ = −i log ω defines a bounded cocycle in Z2
b (Γ,Z(P )sa).

(ii) If ψ = ∂φ for some φ ∈ C1(Γ,Z(P )sa), then ω = ∂ν, where ν(g) = eiφ(g) is a 1-cochain
in C1(Γ,U(Z(P ))).

(iii) Regarding ψ as a cocycle taking values in L2(Z(P ))sa, if ψ = ∂φ for some φ ∈
C1(Γ, L2(Z(P ))sa), then ω = ∂ν for ν(g) = eiφ(g).

Proof. (i). Let log : T \ {−1} → iR be the continuous logarithm with log(1) = 0. For
each g, h ∈ Γ, the spectrum of ω(g, h) lies in the domain of log, so we can define ψ(g, h) =
−i log(ω(g, h)) ∈ Z(P )sa. Note that ‖ψ‖ ≤ π/2. For g, h, k ∈ Γ, the spectra of the operators
αg(ω(h, k)) and ω(g, hk) are contained in {z ∈ T : |z − 1| <

√
2} = {eiθ : −π/2 < θ < π/2}

so that

(2.36) log(αg(ω(h, k))ω(g, hk)) = log(αg(ω(h, k))) + log(ω(g, hk)).

Approximating the logarithm function by polynomials, we have

(2.37) log(αg(ω(h, k))) = αg(log(ω(h, k)))

and this leads to the equation

(2.38) αg(log(ω(h, k))) + log(ω(g, hk)) = log(αg(ω(h, k))ω(g, hk))).

Similarly, log(ω(gh, k)) + log(ω(g, h)) = log(ω(gh, k)ω(g, h)), so ψ satisfies the cocycle iden-
tity

(2.39) αg(ψ(h, k))− ψ(gh, k) + ψ(g, hk)− ψ(g, h) = 0, g, h, k ∈ Γ,

and so defines an element of Z2
b (Γ,Z(P )sa).

(ii). When ψ = ∂φ for some φ ∈ C1(Γ,Z(P )sa), we have ∂ exp(iφ) = exp(i∂φ) = ω as
Z(P ) is abelian.

(iii). This is similar to (ii). Regard ψ as an element of Z2(Γ, L2(Z(P ))sa). If we have ψ =
∂φ for some φ ∈ C1(Γ, L2(Z(P )sa)), then ω = ei∂φ = ∂ exp(iφ), noting that exponentiating
an element of L2(Z(P )) in this fashion produces a unitary element of Z(P ). �

We will be most interested in those crossed products M which are II1 factors and the
subalgebra P satisfies P ′ ∩M ⊆ P . There are two well known sets of conditions which give
rise to this situation.

(1) The twisted version of Murray and von Neumann’s classical group-measure space
construction from [65]. We take P = L∞(X, µ) to be an abelian von Neumann
algebra and the action α : Γ y P to arise from an ergodic, probability measure
preserving action Γ y (X, µ). The resulting twisted crossed product P ⋊α,ω Γ is a
II1 factor under the additional hypothesis that the action is essentially free (meaning
that the set {x ∈ X : g · x = x} is µ-null for all g ∈ Γ, g 6= e). In this case, P is
a maximal abelian subalgebra of P ⋊α,ω Γ (see the discussion of crossed products in
[53]).

(2) When P is a II1 factor and α : Γ y P is an outer action (in the sense that αg is not
inner for g 6= e), then the crossed product P ⋊α Γ is again a II1 factor and P is an
irreducible subfactor of the crossed product, [68].

To unify these situations, say that an action α : Γ y P is properly outer if, for g ∈ Γ with
g 6= e and a nonzero projection z ∈ Z(P ) with αg(z) = z, the automorphism of Pz induced
by αg is not inner. If the fixed point algebra of the restriction of α to Z(P ) is trivial, then
we say that the action is centrally ergodic. When P is abelian, these conditions reduce to
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freeness and ergodicity, while if Z(P ) = C1 they reduce to outerness. It is folklore that the
twisted crossed products produced by trace preserving actions satisfying these conditions
give rise to II1 factors M satisfying the key relation P ′ ∩M ⊆ P .

Proposition 2.5.3. Let P be a finite von Neumann algebra with a fixed faithful normal
normalized trace τP and suppose that α : Γ y P is a trace preserving, centrally ergodic, and
properly outer action of a countable discrete group Γ. Then, for any ω ∈ Z2(Γ,U(Z(P ))),
the twisted crossed product M = P ⋊α,ω Γ is a II1 factor and P ′ ∩M ⊆ P .

2.6. Normalizers. Normalizers were introduced by Dixmier [32] in order to to distinguish
maximal abelian subalgebras (masas) up to automorphisms of the larger algebra. We will
use them to study the structure of twisted crossed products.

Definition 2.6.1. Given an inclusion P ⊆M of von Neumann algebras, the normalizers of
P in M consist of those unitaries u ∈ M with uPu∗ = P . These form a subgroup of the
unitary group of M which we denote N(P ⊆ M). The subalgebra P is called singular if
N(P ⊆ M) = U(P ) and regular if N(P ⊆M)′′ =M .

Twisted crossed products provide the prototype of regular inclusions (the algebra P is
always regular in P ⋊α,ω Γ) but not all regular inclusions arise from a properly outer action
in this way. In [38], Feldman and Moore introduced the notion of a Cartan masa: a masa
A ⊆ M is Cartan if it is regular and there exists a faithful normal conditional expectation
from M onto A. Cartan masas arise from measurable equivalence relations via a generalized
crossed product construction. We will return to this construction in Subsection 6.4, where
we describe a version of our main results in this setting.

Given a II1 factor M and a regular von Neumann subalgebra P containing IM , a bounded
homogenous orthonormal basis of normalizers (see [43, Definition 4.1]) for P ⊆ M is a
family (un)n≥0 in N(P ⊆ M) such that u0 = IM , EM

P (u∗iuj) = δi,jIM for all i, j ≥ 0 and∑∞
n=0 unP is dense in L2(M). Note that the condition EM

P (u∗iuj) = 0 for i 6= j is equivalent

to uiP ⊥ ujP in L2(M). Again, the prototypical behavior is found in the twisted crossed
product construction where the canonical unitaries (ug)g∈G implementing the action provide
a bounded homogeneous orthornormal basis of normalizers. More generally, such a basis can
always be found when P is a Cartan masa in M [43, Lemma 4.2].

We end this section by recording a result about close normalizers from [52] in a form
suitable for later use.

Proposition 2.6.2. Let P ⊆ B(H) be a von Neumann algebra and suppose that u1, u2 ∈
N(P ⊆ B(H)) satisfy ‖u1 − u2‖ < 1. Then there exist unitaries v ∈ P and v′ ∈ P ′ with
u2 = u1vv

′, ‖v − IH‖ ≤
√
2‖u1 − u2‖, and ‖v′ − IH‖ ≤ (

√
2 + 1)‖u1 − u2‖.

Proof. The automorphism θ = Ad(u∗1u2) of P has ‖θ − idP‖ ≤ 2‖u1 − u2‖ < 2. By [52,
Lemma 5], there is a unitary v ∈ P with Ad(v) = θ whose spectrum is contained in the half
plane

(2.40) ℜ(z) ≥ 1

2

(
4− ‖θ − idP‖2

)1/2
.

Computing ‖v − IP‖ via the spectral radius gives

‖v − IP‖2 ≤
(
1− 1

2

(
4− ‖θ − idP‖2

)1/2
)2

+ 1−
(
1

2

(
4− ‖θ − idP‖2

)1/2
)2

≤ 2− (4− ‖θ − idP‖2)1/2 ≤ ‖θ − idP‖2/2 ≤ 2‖u1 − u2‖2.(2.41)
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Since v∗u∗1u2 ∈ P ′, we can write u2 = u1vv
′ for a unitary v′ ∈ P ′ with ‖v′ − IP ′‖ ≤

‖v − IP‖+ ‖u1 − u2‖ ≤ (1 +
√
2)‖u1 − u2‖. �

2.7. Vanishing results for bounded cohomology. Given a properly outer, centrally
ergodic, trace preserving action α : Γ y P of a countable discrete group on a finite von
Neumann algebra with separable predual, it will be of interest to know when the bounded
cohomology groups H2

b (Γ,Z(P )sa) vanish. Examples of nonamenable groups Γ all of whose
actions have this property are given by the work of Burger, Monod and Shalom. We are
grateful to Monod for explaining to us in [62] how the results of [9, 63, 61] can be combined
to provide such groups. Our presentation below is based on [62].

Recall from [60] (noting that in our situation Γ is discrete so issues of continuity disappear)
that a Banach Γ-module is a Banach space equipped with an action π of G by isometries.
The dual action on the dual Banach space E∗ of a Γ-module E gives a Γop-module (the
dual action reverses the order of multiplication). The identification g 7→ g−1 of Γ with Γop

followed by π∗ gives a Γ-module structure on E∗, called the contragredient of E. A coefficient
Γ-module is the contragredient of a separable Banach Γ-module (the choice of predual forms
part of the data). Morphisms between coefficient modules are those Γ-equivariant maps
arising from Γ-equivariant maps at the level of preduals. A coefficient module V is called
semiseparable [61, Definition 3.11] if there is a separable coefficient module U and an injective
map V → U of coefficient modules. In particular, given a trace preserving, centrally ergodic
action α : Γ y P of a discrete group on a finite von Neumann algebra with separable predual,
the Γ-module Z(P )sa is the contragredient of the action α : G y L1(Z(P )sa) and so is a
coefficient module. Further, the module Z(P )sa is semiseparable, as the canonical embedding
Z(P )sa →֒ L2(Z(P ))sa is the contragredient of L2(Z(P )sa) → L1(Z(P )sa). The direct sum
decomposition of Z(P )sa as RIP ⊕ Z(P )0sa, where Z(P )0sa = {z ∈ Z(P )sa : τP (z) = 0} and
Γ acts trivially on RIP , is a direct sum decomposition as semi-separable coefficient modules
and so H2

b (Γ,Z(P )sa) = 0 if and only if H2
b (Γ,Z(P )

0
sa) = 0 and H2

b (Γ,R) = 0.
Let k be a local field (for example R or a non-archimedian local field such as a finite

extension of the p-adic numbers). Let G be a connected, almost k-simple algebraic group
over k with rank at least 2 and let Γ be a lattice in G. Burger and Monod show in [8, 9]
(see the proof of [9, Corollary 24]) that H2

b (Γ,R) is isomorphic to H2
c (G,R), the continuous

cohomology of the underlying group G (in which the cochain complex consists of jointly
continuous maps). This last group is known, and vanishes unless k = R and π1(G) is infinite
(this last condition is equivalent to the canonical symmetric space arising from a maximal
torus being hermitian). In particular, H2

b (Γ,R) = 0 when Γ = SLn(Z) with n ≥ 3. This
vanishing result can be found explicitly as [63, Theorem 1.4] which shows further that,
under the same hypotheses on Γ, H2

b (Γ, E) = 0 for all separable coefficient modules E. In
particular, this shows that when α : Γ y P is a properly outer, centrally ergodic, trace
preserving action of such a group Γ on a finite von Neumann algebra P with separable
predual and finite dimensional center, then H2

b (Γ,Z(P )sa) = 0.
In order to obtain vanishing results when Z(P )sa is infinite dimensional, and so nonsep-

arable as a Banach space, we need to use the results of [61] which handle semiseparable
modules. Let G =

∏
Gi(ki) be a finite product of connected, simply connected semisimple

ki-groups for local fields ki. Then, given a lattice Γ in G and a semiseparable coefficient
module V for Γ with no invariant vectors, the bounded cohomology groups H2

b (Γ, V ) vanish
provided the minimal rank of each ki-almost simple factor of Gi is at least 2 for every i (see
[61, Corollary 1.8], and [61, Corollary 1.6] for the special case of a lattice in a connected,
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simply connected, almost simple group). In particular, we can take V = Z(P )0sa in this result
for any centrally ergodic, properly outer trace preserving action α : Γ y P on a finite von
Neumann algebra with separable predual.

In the case of SLn(Z), the previous two paragraphs give the following result.

Theorem 2.7.1 (Monod). Let Γ = SLn(Z) for n ≥ 3. Then, for any properly outer centrally
ergodic trace preserving action of Γ on a finite von Neumann algebra P with separable predual,
the cohomology group H2

b (Γ, Z(P )sa) vanishes.

In the case of irreducible lattices Γ in finite products G =
∏
Gi(ki) of at least 2 factors

as above, [9, Corollary 24] shows that H2
b (Γ,R) = 0 when G has no hermitian factors.

Just as above, this can be combined with the results of [61] to show that the required
bounded cohomology groups vanish. For example, for n ≥ 3 and a prime p, SLn(Z[1/p])
is an irreducible lattice in SL3(R) × SL3(Qp), and so H2

b (SLn(Z[1/p]), Z(P )sa) = 0 for all
properly outer, centrally ergodic, trace preserving actions SLn(Z[1/p]) y P on a finite von
Neumann algebra with separable predual.

3. Normalizers of amenable subalgebras

Amenable von Neumann algebras were shown to be strongly Kadison-Kastler stable in
[18, 89, 44]. In this section, we exploit this result, and its extension to near inclusions [21]
to examine the normalizer structure of close inclusions of amenable von Neumann algebras.
The situation we will investigate is summarized by the diagram below.

P

�O
�O
�O

⊆ M

�O
�O
�O

δ-close

�O
�O
�O

γ-close

�O
�O
�O

Q ⊆ N

Here M and N are γ-close von Neumann algebras on a Hilbert space H containing von
Neumann subalgebras P and Q respectively which are δ-close. Our objective is to transfer
normalizers of P in M to normalizers of Q in N . This can be done when P (and hence Q)
are amenable or when M (and hence N) are finite (Lemma 3.2.1). Theorem 3.2.3 then gives
a canonical isomorphism between N(P ⊆M)/U(P ) and N(Q ⊆ N)/U(Q) provided γ and δ
are sufficiently small and P ′ ∩M ⊆ P . In Section 5.1, we show how these ideas can be used
to transfer structural properties like solidity from one II1 factor to a nearby factor.

3.1. Existing Perturbation results for von Neumann algebras. We first record the
embedding theorems and other existing perturbation results from [19, 21] which we will
use repeatedly in the sequel. In part (iii) below, note that the hypothesis of the original
statement in [19, Theorem 4.1] is that d(M,N) < 1/8, however the proof only needs the
hypothesis M ⊂γ N and N ⊂γ M given here.

Theorem 3.1.1. (i) ([21, Theorem 4.3, Corollary 4.4]) Let P be an amenable von Neu-
mann subalgebra of B(H) containing IH. Suppose that B is another von Neumann
subalgebra of B(H) and P ⊂γ B for a constant γ < 1/100. Then there exists a unitary
u ∈ (P ∪B)′′ with uPu∗ ⊆ B, ‖IH − u‖ ≤ 150γ and ‖uxu∗ − x‖ ≤ 100γ‖x‖ for x ∈ P .
If, in addition, γ < 1/101 and B ⊂γ P , then uPu

∗ = B.
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(ii) ([21, Corollary 4.2]) If M,N ⊆ B(H) are amenable von Neumann algebras containing
IH and M ⊂γ N for a constant γ < 1/8 then there is a unitary u ∈ (M ∪ N)′′ such
that ‖IH − u‖ ≤ 12γ and uMu∗ ⊆ N . Additionally, if N ⊂γ M then u may be chosen
to also satisfy uMu∗ = N .

(iii) ([19, Theorem 4.1]) If P and Q are unital von Neumann subalgebras of a finite von
Neumann algebra M satisfying P ⊂γ Q ⊂γ P for a constant γ < 1/8 then there is a
unitary u ∈ (P ∪Q)′′ ⊆M with ‖IM − u‖ ≤ 7γ such that uPu∗ = Q.

3.2. Transferring normalizers. The next lemma embarks on the process of relating nor-
malizers of an inclusion P ⊆ M to those for a nearby inclusion Q ⊆ N . Although we will
only be using these results for amenable subalgebras, we have stated them in full generality
whenever possible.

Lemma 3.2.1. Let M and N be von Neumann subalgebras of B(H) containing IH and
satisfying M ⊂γ N ⊂γ M for a constant γ > 0. Let P ⊆ M and Q ⊆ N be von Neumann
subalgebras satisfying P ⊂δ Q ⊂δ P for a constant δ ≥ 0.

(i) Suppose that P and Q are amenable and that 2δ+ δ2+2
√
2γ < 1/8. Given v ∈ N(P ⊆

M), there exists v′ ∈ N(Q ⊆ N) with ‖v − v′‖ < 25δ + 25
√
2γ.

(ii) Suppose thatM and N are finite von Neumann algebras, and that 2δ+δ2+2
√
2γ < 1/8.

Then the conclusion of (i) holds with the improved estimate ‖v − v′‖ < 15δ + 15
√
2γ.

(iii) Suppose that P is amenable, that γ < 1/(2
√
2) and that Q = P . Given v ∈ N(P ⊆M),

there exists v′ ∈ N(P ⊆ N) such that ‖v − v′‖ ≤ (4 + 2
√
2)γ.

(iv) Suppose that P and Q are amenable. Given v ∈ N(P ⊆ M) and v′ ∈ N(Q ⊆ N) with
‖v − v′‖ < 1 − 24δ, there exist unitaries u ∈ (P ∪ Q)′′, w ∈ P and w′ ∈ P ′ satisfying
‖u−IH‖ ≤ 12δ, ‖w−IH‖ < 21/2(24δ+‖v−v′‖), ‖w′−IH‖ < (21/2+1)(24δ+‖v−v′‖),
and u∗v′u = vww′.

Proof. (i)-(ii). Let v ∈ N(P ⊆ M) and choose a unitary u ∈ N with ‖u − v‖ <
√
2γ

by Lemma 2.4.1 (i). Fix x ∈ Q with ‖x‖ ≤ 1, and choose y ∈ P so that ‖x − y‖ < δ,
in which case ‖y‖ < 1 + δ. Then ‖vxv∗ − vyv∗‖ < δ and ‖uxu∗ − vxv∗‖ < 2

√
2γ so

‖uxu∗−vyv∗‖ < δ+2
√
2γ. Since vyv∗ ∈ P , there exists x1 ∈ Q with ‖vyv∗−x1‖ < δ(1+ δ),

and so ‖uxu∗−x1‖ < 2δ+δ2+2
√
2γ. This shows that uQu∗ ⊂2δ+δ2+2

√
2γ Q ⊂2δ+δ2+2

√
2γ uQu

∗,
where the second near inclusion follows by applying the same argument to v∗ and u∗.

For (i) we are assuming that P and Q are amenable, so from Theorem 3.1.1 (ii), there
exists a unitary w ∈ N so that wuQu∗w∗ = Q and ‖IH − w‖ ≤ 12(2δ + δ2 + 2

√
2γ). Define

v′ = wu ∈ N(Q ⊆ N). Then

‖v − v′‖ = ‖v − wu‖
≤ ‖v − u‖+ ‖IH − w‖
≤ 24δ + 12δ2 + 25

√
2γ < 25δ + 25

√
2γ(3.1)

since δ < 1/16. This proves (i).
For (ii) we assume thatM and N are finite von Neumann algebras with no restrictions on

P and Q. The counterpart of the unitary w above may now be chosen so that ‖IH − w‖ ≤
14δ+7δ2+14

√
2γ using Theorem 3.1.1 (iii), leading to the estimate ‖v−v′‖ < 15δ+15

√
2γ.

This proves (ii).
(iii). Now suppose that P is amenable and P = Q. If v ∈ N(P ⊆ M), then Lemma

2.4.1 (i) allows us to choose a unitary u ∈ N with ‖v − u‖ ≤
√
2γ. Thus x 7→ u∗vxv∗u



KADISON–KASTLER STABLE FACTORS 23

defines an isomorphism φ of P into N with ‖φ(x)− x‖ ≤ 2‖u− v‖ ≤ 2
√
2γ < 1 for x ∈ P ,

‖x‖ ≤ 1. From [18, Theorem 4.2], there exists a unitary w ∈ N so that φ(x) = wxw∗ and
‖w − IH‖ ≤ 4γ. Define v′ = uw ∈ N(P ⊆ N) and estimate

‖v − v′‖ = ‖v − uw‖ = ‖w − u∗v‖
≤ ‖w − IH‖+ ‖IH − u∗v‖
≤ 4γ +

√
2γ = (4 +

√
2)γ,(3.2)

as required.
(iv). The hypothesis carries an implicit assumption that δ < 1/24, so Theorem 3.1.1 (ii)

allows us to choose a unitary u ∈ (P ∪ Q)′′ with ‖u − IH‖ ≤ 12δ and uPu∗ = Q. Let
u1 = u∗v′u and u2 = v which both normalize P . Then

‖u1 − u2‖ ≤ ‖u∗v′u− u∗vu‖+ ‖u∗vu− v‖
≤ ‖v′ − v‖+ 2‖u− IH‖ ≤ ‖v′ − v‖+ 24δ < 1.(3.3)

By Proposition 2.6.2 there exist unitaries w ∈ P and w′ ∈ P ′ with u1 = u2ww
′, ‖w− IH‖ ≤√

2‖u1 − u2‖ and ‖w′ − IH‖ ≤ (
√
2 + 1)‖u1 − u2‖. Thus u∗v′u = vww′ with ‖w − IH‖ ≤√

2(‖v − v′‖+ 24δ) and ‖w′ − IH‖ ≤ (
√
2 + 1)(‖v − v′‖+ 24δ). �

Lemma 3.2.2. Let M and N be von Neumann algebras acting nondegenerately on a Hilbert
space H and suppose that M ⊂γ N ⊂γ M where γ > 0. Let P ⊆ M and Q ⊆ N be von

Neumann subalgebras where P ⊂δ Q ⊂δ P for a constant δ ≥ 0. Suppose that 7δ+3
√
2γ < 1

and that one of the following statements holds:

(a) P and Q are both amenable.
(b) M and N are both finite.

Then:

(i) P ′ ∩M ⊆ P if and only if Q′ ∩N ⊆ Q;
(ii) P is a masa in M if and only if Q is a masa in N .

Proof. (i). Fix ε > 0 such that 7δ + 3
√
2γ + ε < 1. We will argue by contradiction, so

suppose that P ′ ∩M ⊆ P but that Q′ ∩ N strictly contains Z(Q). Since the quotient map
of Q′ ∩ N onto (Q′ ∩ N)/Z(Q) has norm 1, we may choose a unitary u ∈ Q′ ∩ N so that
‖u − z‖ ≥ 1 − ε for all z ∈ Z(Q). By Lemma 2.4.1 (i), there is a unitary v ∈ P so that
‖u−v‖ <

√
2γ. Let w ∈ P be an arbitrary unitary and choose y ∈ Q such that ‖w−y‖ ≤ δ.

Then

‖wvw∗ − v‖ = ‖wv − vw‖ ≤ ‖wu− uw‖+ 2
√
2γ

≤ ‖yu− uy‖+ 2δ + 2
√
2γ = 2δ + 2

√
2γ(3.4)

since y commutes with u. In case (a), when P is amenable, we average this inequality over
a generating amenable unitary subgroup of P to obtain an element zP ∈ P ′ ∩M = Z(P ) so
that ‖zP‖ ≤ 1 and ‖zP −v‖ ≤ 2δ+2

√
2γ. In case (b), when M is finite, we use the fact that

the conditional expectation EM
P ′∩M(v) is a weak∗-limit point of convex combinations of the

form
∑n

i=1wivw
∗
i for unitaries wi ∈ P to obtain such a zP = EM

P ′∩M(v) satisfying the same
estimates. Now choose x ∈ Q with ‖x − zP‖ ≤ δ. For any unitary w1 ∈ Q, choose y1 ∈ P
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with ‖w1 − y1‖ ≤ δ. Then

‖w1xw
∗
1 − x‖ = ‖w1x− xw1‖ ≤ ‖w1zP − zPw1‖+ 2δ

≤ ‖y1zP − zP y1‖+ 4δ = 4δ(3.5)

since y1 commutes with zP . A second averaging argument in Q gives an element zQ ∈ Z(Q)
satisfying ‖zQ − x‖ ≤ 4δ. The identity

(3.6) u− zQ = (u− v) + (v − zP ) + (zP − x) + (x− zQ)

yields the estimate ‖u−zQ‖ ≤
√
2γ+(2δ+2

√
2γ)+δ+4δ = 7δ+3

√
2γ. Since ‖u−zQ‖ ≥ 1−ε,

we obtain the contradiction 7δ + 3
√
2γ + ε ≥ 1, proving (i) since it is symmetric in M and

N .
(ii). This will follow from (i) once we know that Q is abelian. In [51, Corollary C] it is

shown that algebras within distance 1/10 of an abelian C∗-algebra are necessarily abelian.
The argument below improves the estimate in this result.

Let u ∈ Q be a unitary and consider an element x ∈ Q with ‖x‖ ≤ 1. Then choose
y1, y2 ∈ P with ‖u − y1‖, ‖x− y2‖ ≤ δ. Since y1 and y2 commute and are both bounded in
norm by 1 + δ, it is easy to estimate that

(3.7) ‖uxu∗ − x‖ = ‖ux− xu‖ ≤ 2δ + 2δ(1 + δ) < 6δ < 6/7.

Averaging over Q using either amenability of Q or finiteness of N as in part (i) gives an
element z ∈ Z(Q) such that ‖z − x‖ ≤ 6/7. Thus the quotient map of Q onto Q/Z(Q) has
norm at most 6/7 and we conclude that Q = Z(Q) so is abelian. �

We now obtain an isomorphism between the quotient groups N(P ⊆ M)/U(P ) and N(Q ⊆
N)/U(Q) provided P ′ ∩M ⊆ P . Write [v] for the coset of a normalizer v ∈ N(P ⊆ M) in
the quotient group N(P ⊆M)/U(P ).

Theorem 3.2.3. Let M and N be von Neumann algebras containing IH on a Hibert space
H satisfyingM ⊂γ N and N ⊂γ M for a positive constant γ. Let P ⊆M be a von Neumann
subalgebra satisfying P ′ ∩M ⊆ P and let Q ⊆ N be a von Neumann subalgebra such that
P ⊂δ Q and Q ⊂δ P for some δ ≥ 0. Suppose that one of the following statements holds:

(a) M and N are both finite and

(3.8) 2(15
√
2γ + 15δ) +

√
2δ < 1;

(b) P and Q are both amenable and

(3.9) 2(25
√
2γ + 25δ) +

√
2δ < 1.

Then there is a group isomorphism

(3.10) Θ : N(P ⊆M)/U(P ) → N(Q ⊆ N)/U(Q)

such that, for each v ∈ N(P ⊆M), Θ([v]) has a representative w ∈ N(Q ⊆ N) with

(3.11) ‖w − v‖ <
{
15
√
2γ + 15δ, in case (a);

25
√
2γ + 25δ, in case (b).

Proof. In both case (a) and case (b), Lemma 3.2.2 (i) applies to show that Q′ ∩N ⊆ Q.
Note that if w,w′ ∈ N(Q ⊆ N) have ‖w − w′‖ < 1, then Proposition 2.6.2 gives unitaries

q ∈ Q and q′ ∈ Q′ with w′ = wqq′. Since q′ ∈ Q′ ∩ N ⊆ Q, it follows that [w] = [w′].
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Similarly two normalizers v, v′ ∈ N(P ⊆ M) with ‖v − v′‖ < 1 represent the same element
of N(P ⊆M)/U(P ).

Define

(3.12) α =

{
15
√
2γ + 15δ, M and N are finite;

25
√
2γ + 25δ, otherwise.

For each v ∈ N(P ⊆ M), Lemma 3.2.1 gives a unitary w ∈ N(Q ⊆ N) with ‖v − w‖ < α
(using part (ii) in case (a) and part (i) in case (b)). We shall define Θ by Θ([v]) = [w],
where w is such a normalizer. Given another normalizer w′ ∈ N(Q ⊆ N) with ‖v−w′‖ < α,
we have ‖w − w′‖ < 2α < 1 so that [w] = [w′] and the definition of Θ does not depend
on the choice of w. Now suppose that v′ ∈ N(P ⊆ M) has [v] = [v′] so v = v′u for some
u ∈ U(P ). By Lemma 2.4.1 (i), there exists a unitary u1 ∈ U(Q) with ‖u− u1‖ <

√
2δ. Let

w,w′ ∈ N(Q ⊆ N) have ‖w − v‖, ‖w′ − v′‖ < α. Then

(3.13) ‖w − w′u1‖ ≤ ‖w − v‖+ ‖v′u− w′u‖+ ‖w′u− w′u1‖ < 2α +
√
2δ < 1,

so that [w] = [w′u1] = [w′]. Therefore Θ is well defined.
For v, v′ ∈ N(P ⊆ M) choose w,w′ ∈ N(Q ⊆ N) with ‖v − w‖, ‖v′ − w′‖ < α. Then

‖vv′ − ww′‖ ≤ 2α < 1 so

(3.14) Θ([vv′]) = [ww′] = [w][w′] = Θ([v])Θ([v′]),

showing that Θ is a group homomorphism. Interchanging the roles of M and N , we can
define a group homomorphism Ψ : N(Q ⊆ N)/U(Q) → N(P ⊆ M)/U(P ) by Ψ([w]) = [v]
where v ∈ N(P ⊆ M) and w ∈ N(Q ⊆ N) have ‖v − w‖ < α. In this way Ψ is the inverse
of Θ and so Θ is bijective. �

4. Reduction to standard position and Cartan masas

Given two close II1 factors M and N on a general Hilbert space H, our objective in this
section is to show how we can construct close isomorphic copies of these algebras on a new
Hilbert space K so that they both act in standard position on K. Difficulties arise because
the usual strategy of changing representations by amplification and compression must be
employed in a fashion compatible with both algebras. In particular, as we do not assume
that M ′ and N ′ are close on H, we must take care in compressing by projections in M ′;
these need not be close to projections in N ′. This suggests that in the cases when M ′ and
N ′ are already known to be close, then matters are more straightforward. This is correct;
we set out the details in Section 4.3.

Once we have reached standard position other tasks become easier. In particular, given
an amenable von Neumann subalgebra P ⊆ M ∩ N with P ′ ∩M ⊆ P we can adjust the
situation so that the inclusions P ⊆ M and P ⊆ N give the same (not just close) basic
construction algebras. It is then straightforward to show that P is regular in M if and only
if it is regular in N .

4.1. Algebras in standard position. Lemma 3.7 of [26] shows that if M is a finite von
Neumann algebra in standard position on the Hilbert spaceH andN is another von Neumann
algebra on H close to M such that M ′ and N ′ are also close, then N is approximately in
standard position in the sense that its coupling function is uniformly close to 1. We start
by showing that, working in the factor case for ease of calculation, the assumption that M ′

and N ′ are close is unnecessary in [26, Lemma 3.7].
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Lemma 4.1.1. Let M be a II1 factor acting non-degenerately on H with dimM(H) ≤ 1. Let
N be another II1 factor acting on this Hilbert space which satisfies M ⊂γ N and N ⊂γ M
for a positive constant γ. The following statements hold:

(i) N ′ ⊂2(1+
√
2)γ M

′;

(ii) if γ < 1/22, then N ′ is finite;
(iii) if γ < 1/47, then M ′ ⊂4(1+

√
2)γ N

′.

Proof. (i). Since M has a cyclic vector on H, this is Proposition 2.1.6 (ii).
(ii). Assume that γ < 1/22 and suppose that N ′ is infinite. Take v ∈ N ′ with v∗v = IH

and vv∗ = e for some projection e 6= IH. Then, by part (i), there is an element w ∈M ′ with
‖w− v‖ ≤ 2(1 +

√
2)γ, which implies that ‖w‖ ≤ 1+2(1 +

√
2)γ. Since v∗v = IH, it follows

that

‖w∗w − IH‖ = ‖w∗w − v∗v‖
≤ ‖w∗w − w∗v‖+ ‖w∗v − v∗v‖
≤ (1 + 2(1 +

√
2)γ)2(1 +

√
2)γ + 2(1 +

√
2)γ

= (2 + 2(1 +
√
2)γ)(2(1 +

√
2)γ),(4.1)

and similarly ‖ww∗ − vv∗‖ ≤ (2 + 2(1 +
√
2)γ)(2(1 +

√
2)γ). As γ < 1/22, it follows that

‖w∗w − IH‖ < 1/2 < 1 and so w∗w is invertible in M ′. Since M ′ is of type II1, we can
write w = u|w|, where u is a unitary. Therefore ww∗ = uw∗wu∗ also satisfies ‖ww∗ − IH‖ =
‖u(w∗w − IH)u

∗‖ < 1/2. Thus

‖e− IH‖ ≤ ‖vv∗ − ww∗‖+ ‖ww∗ − IH‖ <
1

2
+

1

2
= 1,(4.2)

which is a contradiction. This establishes (ii).
(iii). Assume now that γ < 1/47. Since dimM ′(H) ≥ 1, there is a vector η ∈ H with

(4.3) τM ′(x) = 〈xη, η〉, x ∈M ′.

Now by (i), N ′ ⊂2(1+
√
2)γ M

′ where 2(1 +
√
2)γ < 1, and N ′ is finite by (ii). Thus we may

apply Lemma 2.4.4 to this pair to obtain

(4.4) |τN ′(y)− 〈yη, η〉| < 4(1 +
√
2)

2
γ‖y‖, y ∈ N ′.

Let J = {y ∈ N ′ : yη = 0}. Then J is a weakly closed left ideal in N ′ so has the form N ′p
for a projection p ∈ N ′. Since pη = 0, we obtain

(4.5) τN ′(p) < 4(1 +
√
2)2γ < 1/2,

as γ < 1/47. Then τN ′(IH − p) > 1/2, so p is equivalent in N ′ to a projection q ≤ IH − p.
Choose a unitary u ∈ N ′ so that upu∗ = q and define ζ = uη.

Now suppose that x ∈ N ′ satisfies xη = xζ = 0. Then x ∈ J so xp = x and x(IH−p) = 0.
Since xζ = 0, we have xuη = 0 so xu ∈ J and xu = xup. Thus, since q ≤ IH − p,

(4.6) x = xupu∗ = xq = x(IH − p)q = 0.

This proves that the pair {η, ζ} is a separating set for N ′, and so {η, ζ} is a cyclic set for N .
From Proposition 2.1.6 (ii), it follows that M ′ ⊂4(1+

√
2)γ N

′ as required. �
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With the preceding lemma we can now show that if a II1 factor M acts in standard
position on H, then the same is true for any close algebra N . We work in the context of
a distinguished subalgebra A which is a masa in M and in N and satisfies JMAJM ⊆ N ′.
In this case M , M ′, N and N ′ can be taken to have exactly the same tracial vector and so
we can compare the basic construction algebras obtained from subalgebras of M ∩ N . In
particular the inclusions A ⊆ M and A ⊆ N generate the same basic construction algebras
〈M, eA〉 = 〈N, eA〉. We will show subsequently that, at the cost of worse numerical estimates,
we can reduce to the situation where such a masa A exists.

Lemma 4.1.2. Let M be a II1 factor acting in standard position on a Hilbert space H with
tracial vector ξ, and let N be another II1 factor on H. Suppose that M ⊂γ N and N ⊂γ M
for some constant γ < 1/47. Suppose further that A is a masa in both M and N and
JMAJM ⊆ N ′. Then the following hold:

(i) ξ is a tracial vector for both N and N ′ so that N is also in standard position on H.
(ii) (M ∪ {eA})′′ = (JMAJM)′ = (JNAJN )

′ = (N ∪ {eA})′′, where JN is the modular
conjugation operator induced from the cyclic and separating vector ξ for N and eA is
the projection onto Aξ.

Proof. (i). For each unitary u ∈ A and y ∈ N , we have

(4.7) 〈uyu∗ξ, ξ〉 = 〈yu∗ξ, u∗ξ〉 = 〈yJMuJMξ, JMuJMξ〉 = 〈yξ, ξ〉,
as JMuJM ∈ JMAJM ⊆ N ′. Since A′ ∩ N = A, the unique τN -preserving conditional
expectation EN

A : N → A is given by taking EN
A (y) to be the unique element of minimal

‖ · ‖2,τN -norm in the ‖ · ‖2,τN -closed convex hull of {uyu∗ : u ∈ U(A)} (see [96, Lemma 3.6.5],
for example). By convexity, (4.7) gives

(4.8) 〈yξ, ξ〉 = 〈EN
A (y)ξ, ξ〉 = τM(EN

A (y)), y ∈ N.

Lemma 2.4.3 (which applies since γ < 2−3/2) shows that τM |A = τN |A. Thus (4.8) gives
(4.9) τN (y) = τN (E

N
A (y)) = τM (EN

A (y)) = 〈yξ, ξ〉, y ∈ N,

so that ξ is a tracial vector for N .
To see that ξ is a tracial vector for N ′, note that as γ < 1/47, Lemma 4.1.1 gives

M ′ ⊂4(1+
√
2)γ N ′ and N ′ ⊂2(1+

√
2)γ M ′. Since 3

√
2 × 4(1 +

√
2)γ < 1, Lemma 3.2.2 (ii)

shows that JMAJM is a masa of N ′ as JMAJM is a masa of M ′. By Lemma 4.1.1 (ii), N ′ is
finite so the estimate 4(1 +

√
2)γ < 2−3/2 allows us to apply the previous paragraph to the

pair (M ′, N ′) to see that ξ is tracial for N ′, establishing (i).
(ii). Since both M and N are in standard position with respect to the same cyclic and

separating vector ξ (though with possibly different modular conjugation operators JM and
JN), the Hilbert space projection eA from H onto Aξ used to define the basic construction
〈M, eA〉 from the inclusion A ⊆ M is the same projection used to define the basic construction
from the inclusion A ⊆ N . Now

(4.10) JMAJM ⊆ N ′ ∩ {eA}′ = (JNNJN ) ∩ {eA}′ = JNAJN ⊆ JNNJN ,

where we use eA = JNeAJN = JMeAJM and A = N ∩ {eA}′ = M ∩ {eA}′ from Properties
2.3.1 (i) and (ii). As we noted in the previous paragraph, JMAJM is a maximal abelian
subalgebra of N ′ = JNNJN , giving the equality JMAJM = JNAJN . Taking commutants
gives the middle inclusion (JMAJM)′ = (JNAJN)

′ of (ii). The two outermost equalities
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(M ∪{eA})′′ = (JMAJM)′ and (JNAJN)
′ = (N ∪{eA})′′ are the characterization of the basic

construction algebra given in [47, Proposition 3.1.5 (i)] (see Properties 2.3.1 (iii)). �

Next, we extend the previous result to replace the masa A by an amenable von Neumann
subalgebra P ⊆ M with P ′ ∩M ⊆ P satisfying JMPJM ⊆ N ′ and aim to show that the
basic constructions 〈M, eP 〉 and 〈N, eP 〉 are equal. As a consequence, we can show that P
is regular in M if and only if it is regular in N . To do this we use the following theorem
of Popa from [79, Theorem 3.2]. We quote the version that appears as [96, Theorem 12.2.4]
since this records additional information which is implicit in the original.

Theorem 4.1.3 (Popa). Let P be a von Neumann subalgebra of a finite von Neumann
algebra M with separable predual and suppose that P ′∩M ⊆ P . If A0 is a finite dimensional
abelian *-subalgebra of P , then there exists a masa A in M such that A0 ⊆ A ⊆ P .

Lemma 4.1.4. Let M be a II1 factor with separable predual acting in standard position on a
Hilbert space H with tracial vector ξ. Let N be a II1 factor on H with M ⊂γ N and N ⊂γ M
for some γ < 1/47. Suppose that P is an amenable subalgebra of M ∩N with P ′ ∩M ⊆ P
and JMPJM ⊆ N ′. Then the following statements hold.

(i) N is also in standard position on H and ξ is a tracial vector for N and N ′;
(ii) 〈M, eP 〉 = (JMPJM)′ = (JNPJN)

′ = 〈N, eP 〉;
(iii) Suppose P ⊆M is a regular inclusion with a bounded homogeneous basis of normalizers

(un)n≥0 (see Section 2.6) and (vn)n≥0 is a family of normalizers in N(P ⊆ N) with
v0 = IH and satisfying ‖vn−un‖ < 1 for all n. Then (vn)n≥0 is a bounded homogeneous
basis of normalizers for P ⊆ N and so (P ∪ {vn : n ≥ 0})′′ = N .

(iv) N(P ⊆M) generates M if and only if N(P ⊆ N) generates N .

Proof. (i). Since P is amenable and satisfies P ′ ∩ M ⊆ P , Lemma 3.2.2 (i) shows that
P ′ ∩ N ⊆ P . By Theorem 4.1.3 there is a masa A in M with A ⊆ P . Then JMAJM ⊆
JMPJM ⊆ N ′. By Lemma 3.2.2 (ii), A is also a masa in N . Lemma 4.1.2 now shows that N
is in standard position on H with tracial vector ξ and so we can define eP as the projection
onto Pξ. This projection is used to define the basic constructions 〈M, eP 〉 and 〈N, eP 〉.

(ii). Arguing just as in equation (4.10) in Lemma 4.1.2, we have

(4.11) JMPJM ⊆ N ′ ∩ {eP}′ = (JNNJN)
′ ∩ {eP}′ = JNPJN .

For the reverse inclusion, suppose first that A0 is a finite dimensional abelian subalgebra of
P and use Theorem 4.1.3 to find a masa A1 in M with A0 ⊆ A1 ⊆ P . By Lemma 3.2.2 (ii),
A1 is a masa in N . Since JMA1JM ⊆ N ′, Lemma 4.1.2 (ii) gives JMA1JM = JNA1JN . Thus
JNA0JN ⊆ JMA1JM ⊆ JMPJM . Fix a self-adjoint operator x ∈ P and choose a sequence
(xn)

∞
n=1 of elements of P which converge to x in the weak operator topology such that

each W ∗(xn) is a finite dimensional abelian von Neumann algebra. Applying the previous
argument with A0 = W ∗(xn) gives JNxnJN ∈ JMPJM , and so taking weak operator limits,
JNxJN ∈ JMPJM . This gives JNPJN ⊆ JMPJM so these algebras are equal. The middle
equality in (ii) follows by taking commutants, and the outer two equalities by applying
Properties 2.3.1 (iii).

(iii). For each n, apply Proposition 2.6.2 to un and vn to obtain unitaries wn ∈ P and
w′

n ∈ P ′ with un = vnwnw
′
n. As N ⊆ 〈N, eP 〉 = 〈M, eP 〉, we have w′

n ∈ P ′ ∩ 〈M, eP 〉 and
so, by Lemma 2.3.2, there exist unitaries zn ∈ Z(P ) with w′

nξ = znξ. Thus unξ = vnwnznξ
and so we have unPξ = vnPξ. As noted in Section 2.6, the condition EM

P (u∗mun) = 0 for
m 6= n is equivalent to umPξ ⊥ unPξ. Thus the sequence (vn)n≥0 inherits this property
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and so satisfies EN
P (v∗mvn) = δm,nI. Further,

∑∞
n=0 vnPξ is dense in H and so (vn)

∞
n=0 is a

bounded homogeneous basis of normalizers for P ⊆ N . Note that this immediately implies
that (P ∪ {vn : n ≥ 0})′′ = N . Indeed, if N0 ⊆ N is the von Neumann algebra generated by
P and (vn)n≥0, consider x ∈ N with EN

N0
(x) = 0. For each n ≥ 0 and b ∈ P ,

(4.12) 0 = τN (b
∗v∗nE

N
N0
(x)) = τN (E

N
N0
(b∗v∗nx)) = τN (b

∗v∗nx) = 〈xξ, vnbξ〉,
since ξ is a tracial vector for N . Since

∑∞
n=0 vnPξ is dense in H, (4.12) gives xξ = 0, and

hence x = 0 as ξ is separating for N . Thus N = N0 and P ∪ {vn : n ≥ 0} generates N .
(iv). The hypotheses of Lemma 3.2.1 (iii) are satisfied so given any normalizer v ∈ N(P ⊆

M), there exists u ∈ N(P ⊆ N) with ‖v − u‖ ≤ α, where α = (4 + 2
√
2)γ. Using 2α < 1

and arguing just as in the first paragraph of (iii), we see that uPξ = vPξ. Suppose that
N(P ⊆ M) generates M , so that H = span {uξ : u ∈ N(P ⊆M)}. Thus H = span {vξ : v ∈
N(P ⊆ N)}. Just as in the second paragraph of (iii), it then follows that N = N(P ⊆ N)′′.

For the reverse implication, we use parts (i) and (ii) to interchange the roles of M and N .
We have already noted that P ′ ∩N ⊆ P and part (ii) shows that JNPJN = JMPJM ⊆ M ′.
Thus if N(P ⊆ N) generates N , then N(P ⊆M) generates M . �

Remark 4.1.5. (i) The hypothesis of a separable predual in Lemma 4.1.4 is present only
to enable us to use Theorem 4.1.3 to find a masa in M that lies in P . Consequently it
can be dropped if P happens to be a masa in M .

(ii) In the special case that P is a masa inM in Lemma 4.1.4, it follows immediately that P
is Cartan in M if and only if it is Cartan in N . Alternatively, this can be read off from
Popa’s characterization of Cartan and singular masas in terms of the structure of the
basic construction. Part (i) of the proposition in [82, Section 1.4.3] uses the equivalence
of the algebras generated by normalizers and by quasinormalizers of a masa in [86] to
show that a masa B in a II1 factor Q with a separable predual is Cartan if and only if
B′ ∩ 〈Q, eB〉 is generated by finite projections from 〈Q, eB〉. Thus, once we know that
the masa P satisfies 〈M, eP 〉 = 〈N, eP 〉, it follows that it is Cartan in M if and only if
it is Cartan in N .

Given close II1 factors M and N on a Hilbert space H with a cyclic vector for M , the
results of Theorem 3.1.1 combine with Lemma 4.1.2 to show that M and N have the same
coupling constant on H. We make the extra assumption that M and N have a common
masa, a situation to which we will reduce subsequently.

Proposition 4.1.6. Suppose thatM and N are II1 factors acting nondegenerately on H with
M ⊂γ N and N ⊂γ M for γ < 1/136209. Moreover, suppose that M∩N contains an abelian
von Neumann algebra A which is a masa inM . If dimM(H) ≤ 1, then dimN (H) = dimM(H).

Proof. Note that A is also a masa in N by Lemma 3.2.2 (ii). Suppose first that dimM(H) = 1
so that M is in standard position on H with a tracial vector ξ for M and M ′. Since M is in
standard position, Lemma 4.1.1 (iii) gives the near inclusion

(4.13) JMAJM ⊆ JMMJM =M ′ ⊂4(1+
√
2)γ N

′.

The bound on γ ensures that 4(1 +
√
2)γ < 1/100, so we can apply Theorem 3.1.1 (i) to

obtain a unitary

(4.14) v ∈ (JMAJM ∪N ′)′′ ⊆ (JMMJM ∪N ′)′′ = (M ∩N)′ ⊆ A′
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with vJMAJMv
∗ ⊆ N ′ and

(4.15) ‖v − IH‖ ≤ 600(1 +
√
2)γ, d(v(JMAJM)v∗, JMAJM) ≤ 400(1 +

√
2)γ.

Define N1 = v∗Nv so that JMAJM ⊆ N ′
1. An application of (2.2) gives

(4.16) M ⊂γ1 N1, N1 ⊂γ1 M

where γ1 := (1200(1+
√
2)+1)γ. Since A is a masa in N , it is also a masa in N1. The initial

bound on γ ensures that γ1 < 1/47, so we can apply Lemma 4.1.2 (i) to N1 to conclude
that N1 is in standard position on H. Since N1 and N are unitary conjugates, we also have
dimN(H) = 1.

Now suppose that dimM(H) < 1. Choose a projection p ∈ A with τM(p) = dimM(H). We
can cut by p to obtain

(4.17) pMp ⊂γ pNp ⊂γ pMp.

Since pMp is in standard position on pH, the pair pMp and pNp are in the situation of
the previous two paragraphs and consequently pNp is in standard position on pH. Thus
dimpNp(pH) = 1, and noting that τN (p) = τM(p) by Lemma 2.4.3, we see that dimN (H) =
τN (p) = τM(p) = dimM(H) as required. �

Remark 4.1.7. In the situation when M and N are close II1 factors with close commutants
M ′ and N ′ on H, applying the previous proposition to one of the pairs (M,N) or (M ′, N ′)
shows that dimM(H) = dimN(H). This happens when M and N are completely close (see
Section 4.3). Without assuming thatM ′ and N ′ are close, one can formulate a version of the
previous proposition under the hypothesis that dimM(H) ≤ m for m ≥ 1. However, if we
work in this way, then the bound on the maximum size of the near containments to which
such a result applies will depend on m. We do not know whether there is some constant
γ0 > 0 such that any II1 factors M and N on a Hilbert space H with d(M,N) < γ0 have the
same coupling constant. If this were the case, then weak Kadison-Kastler stability would
imply Kadison-Kastler stability for II1 factors.

4.2. Changing representations to standard position. The next lemma is designed to
handle the situation when dimH(M) is large. It enables us to cut M by a projection e ∈M ′

which almost lies in N ′ such that Me has a cyclic vector for eH and so dimMe(eH) ≤ 1.
Once we have replaced N by a small unitary perturbation N1 of N so that e ∈ N ′

1, the
results of the previous subsection will apply to the pair M and N ′

1 on eH. Note that we do
not require a finiteness hypothesis on the von Neumann algebras below.

Lemma 4.2.1. Let M and N be von Neumann algebras acting nondegenerately on a Hilbert
space H with M ⊂γ N and N ⊂γ M for a constant γ > 0. Given a unit vector ζ ∈ H, there

exists a nonzero subprojection e ∈M ′ of the projection with range Mζ satisfying

(4.18) dist (e,N ′) ≤ 6(1 +
√
2)γ + 2((1 +

√
2)γ)1/2,

and if M and N are II1 factors then e may be chosen with the additional property that
dimMe(eH) = 1/n for an integer n. Moreover, if γ satisfies γ < 1/87 then there exists a
projection f ∈ N ′ and a unitary u ∈ (M ′ ∪N ′)′′ so that

(4.19) ‖e− f‖ ≤ 12(1 +
√
2)γ + 4((1 +

√
2)γ)1/2, ‖u− IH‖ ≤

√
2‖e− f‖,

and ueu∗ = f .
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Proof. Choose γ′ < γ which satisfies M ⊆γ′ N and N ⊆γ′ M . Fix a unit vector ζ ∈ H, let

p ∈M ′ be the projection onto Mζ and let q ∈ N ′ be the projection onto Nζ . Given x in the
unit ball of M , choose y ∈ N with ‖x− y‖ ≤ γ′. Since p commutes with x and q commutes
with y, we have the algebraic identity

(4.20) (px)pqp− pqp(px) = p(x− y)qp+ pq(y − x)p,

leading to the estimate

(4.21) ‖(px)pqp− pqp(px)‖ ≤ 2‖x− y‖ ≤ 2γ′,

so‖ad(pqp)|Mp‖ ≤ 2γ′. As the vector ζ is cyclic for Mp acting on the Hilbert space pH,
Proposition 2.1.6 (i) combines with (4.21) to give an element z ∈ (Mp)′ = pM ′p satisfying

(4.22) ‖z − pqp‖ ≤ 2(1 +
√
2)γ′.

After replacing z by (z + z∗)/2 if necessary, we may assume that z is self-adjoint. Let
e1 ∈ pM ′p be the spectral projection of z for the interval [1− 2(1 +

√
2)γ, 1 + 2(1 +

√
2)γ′].

Then z(IpH − e1) ≤ (1 − 2(1 +
√
2)γ)IpH. If e1ζ = 0 then, since pqpζ = ζ , we have a

contradiction from

1 = 〈pqpζ, ζ〉 = 〈(pqp− z)ζ, ζ〉+ 〈z(IpH − e1)ζ, ζ〉
≤ 2(1 +

√
2)γ′ + (1− 2(1 +

√
2)γ) < 1,(4.23)

as γ′ < γ. Thus e1ζ 6= 0. From the functional calculus, ‖ze1 − e1‖ ≤ 2(1 +
√
2)γ, and so

‖e1 − e1qe1‖ ≤ 2(1 +
√
2)γ + ‖ze1 − e1qe1‖

= 2(1 +
√
2)γ + ‖e1(z − pqp)e1‖ ≤ 4(1 +

√
2)γ.(4.24)

There are now two cases to consider. IfM is not a II1 factor then rename e1 as e, omitting
the next step. However, if M is a II1 factor then dimMe1(e1H) ≤ 1 since e1ζ is a cyclic
vector for Me1 on e1H. Choose an integer n so that n dimMe1(e1H) ≥ 1 and choose a
projection e ∈ e1M

′e1 so that τe1M ′e1(e) = (n dimMe1(e1H))−1. By Properties 2.3.3 (i),
dimMe(eH) = τe1M ′e1(e) dimMe1(e1H) = 1/n, and

(4.25) ‖e− eqe‖ = ‖e(e1 − e1qe1)e‖ ≤ ‖e1 − e1qe1‖ ≤ 4(1 +
√
2)γ

from (4.24). This shows that (4.25) is satisfied in both cases. Thus, from (4.25),

(4.26) ‖e(IH − q)e‖ ≤ 4(1 +
√
2)γ

so

(4.27) ‖(IH − q)e‖ ≤ (4(1 +
√
2)γ)1/2,

and from this we deduce that

(4.28) ‖(IH − q)e(IH − q)‖ ≤ 4(1 +
√
2)γ.

Writing

(4.29) e = qeq + qe(IH − q) + (IH − q)eq + (IH − q)e(IH − q),
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we obtain the estimate

‖e− qeq‖ ≤ ‖qe(IH − q) + (IH − q)eq‖+ 4(1 +
√
2)γ

= max{‖qe(IH − q)‖, ‖(IH − q)eq‖}+ 4(1 +
√
2)γ

≤ (4(1 +
√
2)γ)1/2 + 4(1 +

√
2)γ.(4.30)

If x is in the unit ball of N , choose y ∈ M with ‖x − y‖ ≤ γ. Noting that x commutes
with q and y commutes with both e and p, the algebraic identity

xq(qeq) = qxeq = q(x− y)eq + qyeq = q(x− y)eq + qeyq

= q(x− y)eq + qe(y − x)q + qeqxq(4.31)

gives the inequalities ‖xq(qeq) − (qeq)xq‖ ≤ 2γ and ‖ad(qeq)|Nq‖ ≤ 2γ. Since ζ is a cyclic
vector for Nq on qH, Proposition 2.1.6 (i) provides an element t ∈ (Nq)′ = qN ′q so that
‖t− qeq‖ ≤ 2(1 +

√
2)γ, so

(4.32) ‖e− t‖ ≤ ‖e− qeq‖+ ‖t− qeq‖ ≤ 2((1 +
√
2)γ)1/2 + 6(1 +

√
2)γ,

establishing (4.18).
Define γ1 = 2((1 +

√
2)γ)1/2 +6(1 +

√
2)γ, and now suppose that the inequality γ < 1/87

holds, which ensures that γ1 < 1/2. Replacing t by (t + t∗)/2 if necessary, we may assume
that t is self-adjoint. The Hausdorff distance between the spectra Sp(e) and Sp(t) is at
most ‖e − t‖ ≤ γ1 (see for example [31, Proposition 2.1]), and so Sp(t) is contained in
[−γ1, γ1] ∪ [1 − γ1, 1 + γ1]. If f denotes the spectral projection of t for the second of these
intervals, then ‖f − t‖ ≤ γ1, giving the estimate ‖e − f‖ ≤ 2γ1 < 1. In this case Lemma
2.4.2 provides a unitary u ∈ (M ′ ∪ N ′)′′ with ‖u − IH‖ ≤

√
2‖e − f‖ and ueu∗ = f . This

establishes (4.19). �

Remark 4.2.2. The previous lemma enables us to find a nonzero projection e ∈ M ′ close
to N ′ such that Me has a cyclic vector for e(H). However, we have not been able to choose
e so that τM ′(e) is close to τM ′(p). To see what the difficulty is, suppose that M is a II1
factor and ζ is a tracial vector for Mp and pM ′p on p(H) so that τM ′(p) = 1. Performing
the calculation in (4.23) more precisely leads to 〈ze1ζ, ζ〉 ≥ 2(1 +

√
2)(γ − γ′) and hence

(4.33) τM ′(e1) = 〈e1ζ, ζ〉 ≥
1

1 + 2(1 +
√
2)γ′

〈ze1ζ, ζ〉 ≥
2(1 +

√
2)(γ − γ′)

1 + 2(1 +
√
2)γ′

.

Thus our methods only allow us to control the trace of the projection e1 (and hence e) in
terms of the ‘gap’ between γ and γ′.

We are now in a position to combine the previous results and show that, starting with two
close II1 factors on a Hilbert space, it is possible to produce new close representations of these
factors on another Hilbert space so that both are simultaneously in standard position. This
enables us to transfer regular amenable subalgebras from one factor to its close counterpart.
The lemma below does this in a form designed for immediate use in Section 6. We then set
out versions of this result in a general setting and give some applications to the structure of
close factors.

Lemma 4.2.3. Let M and N be II1 factors with separable preduals acting nondegenerately
on the Hilbert space H and suppose that there is a positive constant γ < 1.74×10−13 such that
M ⊂γ N and N ⊂γ M . Suppose further that there is an amenable von Neumann subalgebra
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P ⊆M∩N satisfying P ′∩M ⊆ P . Then there exists a separable Hilbert space K and faithful
normal representations π :M → B(K) and ρ : N → B(K) with the following properties:

(i) π(M) and ρ(N) are in standard position on K, and there is a common tracial vector ξ
for π(M), π(M)′, ρ(N) and ρ(N)′.

(ii) π(M) ⊂β ρ(N) and ρ(N) ⊂β π(M) for a constant β satisfying the estimate

β < 50948γ1/2 < 1/47.

(iii) If x ∈ M and y ∈ N satisfy ‖x‖, ‖y‖ ≤ 1 and ‖x − y‖ ≤ δ for some δ > 0, then
‖π(x)− ρ(y)‖ ≤ δ + β.

(iv) π|P = ρ|P .
(v) P ′ ∩N ⊆ P .
(vi) P is regular in M if and only if it is regular in N .
(vii) The basic construction algebras on K given by 〈π(M), eπ(P )〉 = (π(M) ∪ {eπ(P )})′′ and

〈ρ(N), eπ(P )〉 = (ρ(N) ∪ {eπ(P )})′′ are equal, where eπ(P ) is the projection from K onto

π(P )ξ.
(viii) If P ⊆ M has a bounded homogeneous orthonormal basis of normalizers (un)n≥0 in

N(P ⊆M) and (vn)n≥0 is a sequence in N(P ⊆ N) satisfying ‖un − vn‖ < 1− β, then
(vn)n≥0 is a bounded homogeneous orthonormal basis of normalizers for P ⊆ N .

Proof. Use Popa’s Theorem (Theorem 4.1.3) to choose a masa A ⊆ P such that A is also a
masa in M . Write M1 = M , N1 = N , P1 = P and A1 = A. Since γ < 1/87, we can apply
Lemma 4.2.1 to M1 and N1 to obtain nonzero projections e ∈M ′

1 and f ∈ N ′
1 and a unitary

u1 ∈ (M ′
1 ∪N ′

1)
′′ so that M1e has a cyclic vector on eH,

(4.34) ‖u1 − IH‖ ≤
√
2‖e− f‖ ≤

√
2
(
12(1 +

√
2)γ + 4((1 +

√
2)γ)1/2

)

and u1eu
∗
1 = f . Moreover, we can additionally assume that dimM1e(eH) = 1/n for an

integer n. Since e ∈M ′
1∩ (u∗1N1u1)

′ we can compress these algebras by e. Write H2 = e(H),
M2 = M1e, N2 = (u∗1N1u1)e, P2 = P1e and A2 = A1e so that M2 and N2 act on H2,
P2 ⊆ M2 ∩ N2 (as u1 commutes with P1) and the near inclusions M2 ⊂γ2 N2 ⊂γ2 M2 hold,
where γ2 is given by

(4.35) γ2 = 2
√
2
(
12(1 +

√
2)γ + 4((1 +

√
2)γ)1/2

)
+ γ < 17.58γ1/2.

By construction dimM2
(H2) = 1/n.

Now define H3 = H2⊗Cn,M3 = (M2⊗In), P3 = (P2⊗In), A3 = (A2⊗In), N3 = (N2⊗In)
and γ3 = γ2. Then M3 ⊂γ3 N3 and N3 ⊂γ3 M3, P3 ⊆ M3 ∩ N3 and dimM3

H3 = 1 (by
Properties 2.3.3 (i)) so that M3 is in standard position on H3.

Consider the masa A3 ⊆M3. As γ3 < 1/47, Lemma 4.1.1 (iii) gives JM3
M3JM3

⊂4(1+
√
2)γ3

N ′
3. As 4(1 +

√
2)γ3 < 1/100, another application of Theorem 3.1.1 (i) provides a unitary

u3 ∈ (JM3
A3JM3

∪N ′
3)

′′ ⊆ P ′
3 so that ‖IH3

−u3‖ < 600(1 +
√
2)γ3 and u3(JM3

A3JM3
)u∗3 ⊆ N ′

3.
Define H4 = H3, M4 =M3, P4 = P3, A4 = A3, N4 = u∗3N3u3, and

(4.36) γ4 = (1200(1 +
√
2) + 1)γ3 < (1200(1 +

√
2) + 1)(17.58)γ1/2 < 50948γ1/2 < 1/47.

Then JM4
A4JM4

⊆ N ′
4, and P4 ⊆ M4 ∩ N4 since u3 commutes with P3. The estimate (2.2)

gives the near inclusion M4 ⊂γ4 N4 ⊂γ4 M4 and then the bound on γ4 allows us to apply
Lemma 3.2.2 (ii) to conclude that A4 is also a masa in N4. The hypotheses of Lemma 4.1.2
are now met, from which we see that M4,M

′
4, N4 and N ′

4 have a common tracial vector.
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At each stage of the proof, the various constructions have ensured that the pairs (Mk,Mk+1)
are canonically isomorphic via compressions, amplifications or unitary conjugation, while
the same is true for (Nk, Nk+1), 1 ≤ k ≤ 3. Now let K = H4 and define two isomorphisms
π : M → M4 and ρ : N → N4 as the compositions of the isomorphisms constructed above,
whereupon π(P ) = P4 ⊆ M4 ∩ N4 = π(M) ∩ ρ(N). We take β to be γ4. This establishes
parts (i) and (ii). Since all the unitaries uk used to construct the isomorphisms π and ρ
commute with the corresponding Pk, it follows directly that π|P = ρ|P , giving (iv). The
estimate of part (iii) also follows from the explicit form of the π and ρ as a composition of
unitary conjugations, compressions and amplifications. The latter two operations do not in-
crease distances and the unitaries involved are all close to the identity operator, so repeated
application of the triangle inequality gives the specified estimate.

Item (v) is part (i) of Lemma 3.2.2, while the remaining conditions follow from Lemma
4.1.4. Indeed (vii) is part (ii) of Lemma 4.1.4, while part (iv) of Lemma 4.1.4 shows that
π(P ) is regular in π(M) if and only if ρ(P ) is regular in ρ(N). Since π and ρ are both
faithful, condition (vi) follows. For (viii), given (un) and (vn) as in this condition, note that
the hypothesis ‖un − vn‖ < 1− β gives ‖π(un)− ρ(vn)‖ < 1 by part (iii). Thus, as (π(un))n
is a bounded homogeneous orthonormal basis of normalizers for π(P ) ⊆ π(M), Lemma 4.1.4
(iii) shows that (ρ(vn))n is a bounded homogeneous orthonormal basis of normalizers for
ρ(P ) ⊆ ρ(N). As ρ is faithful, we again deduce that (vn)n provides a bounded homogeneous
orthonormal basis of normalizers for P ⊆ N . �

The procedure above enables us to transfer close II1 factors on a Hilbert space to another
space so that they both act in standard position. Thus for the weakest version Kadison-
Kastler stability problem for II1 factors, we can assume that all factors act in standard
position: we record this below. Note that more care is required for the stronger spatial
versions of the problem. Once we transfer algebras so that they both lie in standard position,
any isomorphism between them will be spatially implemented on the new Hilbert space,
but, without further information we do not know whether this isomorphism is spatially
implemented on the original Hilbert space.

Theorem 4.2.4. Let M and N be II1 factors with separable preduals nondegenerately rep-
resented on a Hilbert space H with M ⊂γ N and N ⊂γ M for some γ < 5.7 × 10−16.
Then there exists a Hilbert space K and faithful normal representations π :M → B(K) and
ρ : N → B(K) such that π(M), π(M)′, ρ(N) and ρ(N)′ have a common tracial vector on K

and π(M) ⊂β ρ(N) ⊂β π(M) for

(4.37) β = 50948× (301)1/2γ1/2 + 300γ < 8.84× 105γ1/2.

Further, given x ∈M and y ∈ N with ‖x‖, ‖y‖ ≤ 1 and ‖x−y‖ ≤ δ, we have ‖π(x)−ρ(y)‖ ≤
β + δ + 300γ.

Proof. Choose a masa A in M . By Theorem 3.1.1 (i) there is a unitary u ∈ (A ∪ N)′′ with
‖u − IH‖ ≤ 150γ and uAu∗ ⊆ N . Consider N1 = u∗Nu, which has M ⊂γ1 N1 ⊂γ1 M ,
where γ1 = 301γ. As γ1 < 1.74 × 10−13, we can take M and N1 in Lemma 4.2.3 to obtain
representations π and ρ1 satisfying the properties of that lemma (with the β of that lemma
being given by 50948× (301)1/2γ1/2). Define ρ(y) = ρ1(u

∗yu). It is routine to verify that π
and ρ satisfy the required estimates. �

Since the breakthrough paper [82], there has been considerable interest in how many
Cartan masas a II1 factor contains, up to unitary conjugacy: [70] gives the first class of
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factors with a unique Cartan masa up to unitary conjugacy; [29] provides the first examples
of factors with two Cartan masas which are not even conjugate by an automorphism; [71]
provides more examples of factors with unique Cartan masas and new factors with at least
two Cartan masas and recently large classes of crossed products have been shown to have
unique Cartan masas [14, 87, 88]. At the other end of the spectrum, [99] provides a II1 factor
with unclassifiably many Cartan masas up to conjugacy by an automorphism. Here we show
that close II1 factors have the same Cartan masa structure.

Given a II1 factor M , let Cartan(M) be the collection of equivalence classes of Cartan
masas in M under the relation A1 ∼ A2 if and only if there is a unitary u ∈ M with
uA1u

∗ = A2.

Theorem 4.2.5. Let M and N be II1 factors with separable preduals acting nondegenerately
on a Hilbert space H with M ⊂γ N and N ⊂γ M for a constant γ < 5.7× 10−16.

(i) Suppose P ⊆ M is an amenable regular von Neumann subalgebra with P ′ ∩M ⊆ P
and Q ⊆ N is a von Neumann subalgebra with P ⊂δ Q ⊂δ P for some δ ≥ 0 such that
300γ + δ < 1/8. Then Q is regular in N and satisfies Q′ ∩N ⊆ Q.

(ii) If A is a Cartan masa in M , then there exists a Cartan masa B in N satisfying
d(A,B) < 100γ.

(iii) There exists a canonical bijective map Θ : Cartan(M) → Cartan(N), given by θ([A]) =
[B] where A ⊆M and B ⊆ N are Cartan masas with d(A,B) < 100γ.

(iv) If M has a unique Cartan masa up to unitary conjugacy, then the same is true for N .

Proof. (i). Since γ < 1/100, we may apply Theorem 3.1.1 (i) to obtain a unitary u ∈ (P∪N)′′

satisfying ‖u − IH‖ ≤ 150γ, uPu∗ ⊆ N , and d(P, uPu∗) ≤ 100γ. Define N1 = u∗Nu, so
that P ⊆ M ∩ N1 and M ⊂γ1 N1 ⊂γ1 M where γ1 = 301γ. Then the bound on γ gives
γ1 < 1.74 × 10−13, so we may apply Lemma 4.2.3 to conclude that P is regular in N1 and
P ′∩N1 ⊆ P . Thus Q1 := uPu∗ is regular in N and satisfies Q′

1 ∩N ⊆ Q1. Now by equation
(2.2), Q1 ⊂η Q ⊂η Q1 where η = 300γ + δ < 1/8. By Theorem 3.1.1 (iii), Q and Q1 are
unitarily conjugate inside N . Thus Q inherits the desired properties from Q1.

(ii). Given a Cartan masa A inM , there exists a unitary u ∈ (A∪N)′′ with B = uAu∗ ⊆ N
and d(A,B) < 100γ by Theorem 3.1.1 (i). Then B is a masa in N by Lemma 3.2.2 (ii) and
then is Cartan by (i).

(iii). From (ii), to each Cartan masa A in M we may associate a Cartan masa B in N so
that d(A,B) < 100γ. Let A1 be another Cartan masa in M and choose a Cartan masa B1

in N with d(A1, B1) < 100γ. If there exists a unitary u ∈M such that A1 = uAu∗, then by
Lemma 2.4.1 (i), there is a unitary v ∈ N with ‖u− v‖ <

√
2γ. Then

d(B1, vBv
∗) < d(B1, uBu

∗) + 2‖u− v‖
< d(B1, uAu

∗) + 2
√
2γ + 100γ

= d(B1, A1) + (100 + 2
√
2)γ < (200 + 2

√
2)γ < 1/8.(4.38)

Thus B1 and vBv∗ are unitarily conjugate in N by Theorem 3.1.1 (iii) so B1 and B are
unitarily conjugate in N . This shows that there is a well defined map Θ : Cartan(M) →
Cartan(N), defined on [A] by choosing a Cartan masa B as above and letting Θ([A]) = [B].
In the same way there is a map Φ : Cartan(N) → Cartan(M) so that for each Cartan masa
B in N , Φ([B]) = [A] where A ⊆ M is chosen so that d(B,A) < 100γ. By construction Φ is
the inverse of Θ so Θ is bijective.

(iv). This is immediate from (iii). �
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Remark 4.2.6. When M and N are sufficiently close II1 factors, we can also transfer other
structural properties of a masa A ⊆ M to a sufficiently close masa B ⊆ N . Theorem
3.2.3 shows that B ⊆ N is singular if and only if A ⊆ M is singular. Within the class
of singular masas, the Pukánszky invariant has perhaps been the most successful method
of distinguishing nonconjugate masas (see [96, Chapter 7] for background on this invariant,
including its definition). As the Pukánszky invariant of A ⊆ M is defined in terms of the
relative commutant of the basic construction, A′∩〈M, eA〉, it follows from Lemma 4.2.3 that
if A ⊆ M and B ⊆ N are sufficiently close masas, then they have the same Pukánszky
invariant.

4.3. The reduction procedure for completely close algebras. Since completely close
II1 factors, have (completely) close commutants (Proposition 2.2.3), the process of changing
representations is much easier in this context. We start by noting that completely close II1
factors always have the same coupling constant.

Proposition 4.3.1. Let M and N be II1 factors acting nondegenerately on a separable
Hilbert space H and suppose that dcb(M,N) < γ where

(4.39) γ < (301× 136209)−1.

Then dimM(H) = dimN(H).

Proof. If both dimensions are infinite then there is nothing to prove, so suppose without
loss of generality that dimM(H) < ∞. We have M ⊂cb,γ N and N ⊂cb,γ M so these near
inclusions are also valid with M ′ and N ′ replacing M and N respectively, by Proposition
2.2.3. By symmetry, we may suppose that dimM(H) ≤ 1, otherwise apply the following
argument to M ′.

Choose a masa A ⊆M . Since γ < 1/100, Theorem 3.1.1 (i) gives a unitary u ∈ (A ∪N)′′

so that ‖u− IH‖ ≤ 150γ, d(A, uAu∗) ≤ 100γ, and uAu∗ ⊆ N . Define N1 = u∗Nu and note
that A ⊆ M ∩ N1 while d(M,N1) ≤ d(M,N) + 2‖u − IH‖ ≤ 301γ. Since 3

√
2 × 301γ < 1,

Lemma 3.2.2 (ii) allows us to conclude that A is also a masa in N1. The hypotheses of
Proposition 4.1.6 are now met since 301γ < 1/136209 and so dimN1

(H) = dimM(H). The
result follows since dimN1

(H) = dimN (H) by the unitary conjugacy of N and N1. �

We can also easily change representations of completely close von Neumann algebras.

Proposition 4.3.2. Let M and N be von Neumann algebras acting nondegenerately on a
Hilbert space H with dcb(M,N) < γ for γ < 1. Given any unital normal ∗-representation π
of M on another Hilbert space K, there exists a unital normal ∗-representation ρ of N on
K such that dcb(π(M), ρ(N)) ≤ 3γ and ρ|M∩N = π|M∩N . Further, if x ∈ M and y ∈ N are
contractions with ‖x− y‖ ≤ δ for some δ ≥ 0, then ‖π(x)− ρ(y)‖ ≤ 2γ + δ.

Proof. The general theory of normal *-representations [33, I §4 Theorem 3] allows us to
choose a set S and a projection p ∈ M ′ ⊗B(ℓ2(S)) so that π is unitarily equivalent to the
*-representation π1 : x 7→ (x ⊗ Iℓ2(S))p of M on K1 = p(K). Identifying M and N with
their amplificationsM⊗Iℓ2(S) and N⊗Iℓ2(S) respectively and, noting thatM ′ ⊗B(ℓ2(S)) ⊂γ

N ′ ⊗B(ℓ2(S)) by Properties 2.2.2 (iii), it follows from Lemma 2.4.1 (ii) that there is a
projection q ∈ N ′ ⊗B(ℓ2(S)) with ‖p − q‖ < 2−1/2γ. Since p, q ∈ (M ∩ N)′ ⊗B(ℓ2(S)),
Lemma 2.4.2 gives a unitary u ∈ (M ∩ N)′ ⊗B(ℓ2(S)) such that ‖u − IH⊗ℓ2(S)‖ < γ and
upu∗ = q. Define ρ1 : N → B(K1) by ρ1(x) = u∗(x⊗ IH⊗ℓ2(S))up for x ∈ N . By construction
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ρ1|M∩N = π1|M∩N . Further

(4.40) dcb(π1(M), ρ1(N)) ≤ dcb(M,N) + 2‖u− IH⊗ℓ2(S)‖ < 3γ.

Now choose a unitary V : K → K1 so that π = V ∗π1V , and let ρ = V ∗ρ1V so that
dcb(π(M), ρ(N)) < 3γ. When x ∈ M and y ∈ N are contractions, we have ‖π(x)− ρ(y)‖ ≤
2‖u− IH⊗ℓ2(S)‖+ ‖x− y‖. �

In the presence of complete closeness, we also obtain a more direct proof of the key
reduction result Lemma 4.2.3 with improved constants. Note that the constant β below is
now O(γ) as γ → 0 whereas it was O(γ1/2) in the original (c.f. Remark (1) of [11]).

Theorem 4.3.3. Let M and N be II1 factors with separable preduals acting nondegenerately
on a Hilbert space H and suppose that there is a constant γ < 1/(903 × 47) such that
M ⊂cb,γ N and N ⊂cb,γ M . Suppose that P ⊆ M ∩N is an amenable von Neumann algebra
satisfying P ′ ∩M ⊆ P . Then there exist a separable Hilbert space K and faithful normal
*-representations π :M → B(K) and ρ : N → B(K) such that:

(i) Property (i) from Lemma 4.2.3 is satisfied.
(ii) π(M) ⊂cb,β ρ(N) and ρ(N) ⊂cb,β π(M) where β = 903γ.
(iii) If x ∈ M and y ∈ N are contractions with ‖x− y‖ ≤ δ for some δ ≥ 0, then ‖π(x) −

ρ(y)‖ ≤ δ + 903γ.
(iv) π|P = ρ|P ;
(v) Properties (v-viii) from Lemma 4.2.3 are satisfied (with the value of β above).

Proof. By Proposition 4.3.2 we may find faithful representations π : M → B(K) and
ρ1 : N → B(K) which agree on P such that M1 = π(M) is in standard position on K,
M1 ⊂cb,3γ ρ1(N), ρ1(N) ⊂cb,3γ M1 and ‖π1(x) − ρ1(y)‖ ≤ 3γ whenever x ∈ M and y ∈ N
are contractions with ‖x− y‖ < γ. Write P1 = π1(P ) = ρ1(P ) and N1 = ρ1(N) and fix, by
Popa’s theorem ([79]), a masa A1 ⊂M1 with A1 ⊆ P1. SinceM

′
1 ⊂3γ N

′
1 by Proposition 2.2.3,

apply Theorem 3.1.1 (i) to obtain a unitary u ∈ (JM1
A1JM1

∪N ′
1)

′′ so that ‖u− IK‖ < 450γ
and uJM1

A1JM1
u∗ ⊆ N ′

1. Define ρ : N → B(K) by ρ(y) = u∗ρ1(y)u so that conditions (ii)
and (iii) hold. Property (i) from Lemma 4.2.3 follows from Lemma 4.1.2, noting that the
estimate on γ ensures that β < 1/47. Property (v) from Lemma 4.2.3 is now obtained from
part (i) of Lemma 3.2.2 while the remaining properties follow from Lemma 4.1.4 in just the
same way as in the proof of Lemma 4.2.3. �

5. Structural properties of close II1 factors

We will now use the methods of Sections 3 and 4 to show that close factors share the same
structural properties in the spirit of [26]. A key objective, achieved in Lemma 5.2.4, is to
show that ifM is a McDuff II1 factor and N is another factor close toM , then, after making
a small unitary perturbation, we can simultaneously factor M = M1 ⊗R and N = N1⊗R
with M1 and N1 close.

5.1. Solid and strongly solid factors. As indicated to us by Kadison, one of the original
motivations for the introduction of perturbation theory in [51] was to study the free group
factors. Here we investigate the behavior of factors close to free group factors in the light
of developments in the structure theory of these algebras. In [69], Ozawa discovered a
remarkable property of certain II1 factors, showing that the von Neumann algebra of a
hyperbolic group is solid in the sense that every diffuse unital von Neumann subalgebra
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B ⊆ M has an amenable relative commutant B′ ∩ M . Subsequently Ozawa and Popa
generalized the concept of solidity further: a II1 factor M is said to be strongly solid if
every unital diffuse amenable subalgebra B ⊆ M has an amenable normalizing algebra
N(B ⊆M)′′. In [70], they extended Voiculescu’s result that free group factors do not contain
Cartan masas [103] by showing that free group factors are strongly solid. Subsequently a
range of strongly solid factors have been discovered (see [71, 41, 14, 97] for example). Both
of these properties are inherited by sufficiently close algebras, as we now show.

Proposition 5.1.1. Let M and N be II1 factors acting nondegenerately on a Hilbert space
H with d(M,N) < γ.

(i) Suppose that γ < 1/28669. Then M is solid if and only if N is solid.
(ii) Suppose that γ < 1/3200. Then M is strongly solid if and only if N is strongly solid.

Proof. (i). Suppose that M is solid and let B0 ⊆ N be diffuse. Choose a masa B in B0

and note that B is diffuse since B0 has this property. It suffices to show that B′ ∩ N is
amenable as then B′

0 ∩ N ⊆ B′ ∩ N is also amenable since N is finite. Amenability of B
allows us to apply Theorem 3.1.1 (i) to obtain a unitary u ∈ (B ∪M)′′ with uBu∗ ⊆ M ,
‖u − IH‖ ≤ 150γ and d(uBu∗, B) ≤ 100γ. Define A = uBu∗ ⊆ M . Lemma 2.4.5 (i) shows
that A′ ∩M ⊆η B

′∩N and B′∩N ⊆η A
′∩M where η = 200

√
2γ+ γ < 1/101 by the choice

of the bound on γ. Amenability of A′ ∩M follows from the assumption that M is solid, so
Theorem 3.1.1 (i) gives an isomorphism between A′ ∩M and B′ ∩N so B′ ∩N is amenable.
Thus N is solid. The reverse implication follows by interchanging the roles of M and N .

(ii). Without loss of generality, suppose that N is strongly solid and let P be a unital
diffuse amenable von Neumann subalgebra of M . By Theorem 3.1.1 (i), there exists a
unital von Neumann subalgebra Q ⊆ N isomorphic to P such that d(P,Q) ≤ 100γ. Now
N(Q ⊆ N)′′ is amenable by assumption, and thus another application of Theorem 3.1.1
(i) gives a unitary u ∈ (N(Q ⊆ N) ∪M)′′ with uN(Q ⊆ N)′′u∗ ⊆ M , ‖u − IH‖ ≤ 150γ
and d(uN(Q ⊆ N)′′u∗,N(Q ⊆ N)′′) ≤ 100γ. Then (2.2) gives P ⊆400γ uQu∗ ⊆400γ P
and so, since our hypothesis ensures that 400γ < 1/8, Theorem 3.1.1 (iii) gives a unitary
u1 ∈ (P ∪ uQu∗)′′ ⊆M with ‖u1 − IH‖ ≤ 2800γ and u1Pu

∗
1 = uQu∗.

Consider P = u∗1uQu
∗u1 as a subalgebra of N1 := u∗1uNu

∗u1 and note that

d(M,N1) = d(u∗1Mu1, uNu
∗) = d(M,uNu∗)

≤ d(M,N) + 2‖u− IH‖ < 301γ.(5.1)

Now uN(Q ⊆ N)u∗ ⊆ M and u1 ∈ M so u∗1uN(Q ⊆ N)u∗u1 ⊆ M . We also have that
N(P ⊆ N1)

′′ = u∗1uN(Q ⊆ N)′′u∗u1, and it follows that N(P ⊆ N1)
′′ is an amenable

subalgebra of M . Moreover, P ′ ∩N1 ⊆ N(P ⊆ N1)
′′ ⊆M , implying that P ′ ∩N1 ⊆ P ′ ∩M .

Then Lemma 2.4.5 (i) (with δ = 0) gives P ′ ∩M ⊆301γ P
′ ∩ N1 and so P ′ ∩M = P ′ ∩ N1

since 301γ < 1 (this is a folklore Banach space argument, see [28, Proposition 2.4] for the
precise statement being used). Let γ1 := 301γ, yielding M ⊂γ1 N1 ⊂γ1 M .

To establish that N(P ⊆ M)′′ ⊆ N(P ⊆ N1)
′′, consider a unitary v ∈ N(P ⊆ M). We

apply Lemma 3.2.1 (iii) (with γ1 < 1/(2
√
2) replacing γ) to obtain a unitary v′ ∈ N(P ⊆ N1)

with ‖v−v′‖ ≤ (4+2
√
2)γ1. Since (4+2

√
2)γ1 = (4+2

√
2)(301)γ < (4+2

√
2)(301)/3200 < 1,

Proposition 2.6.2 gives unitaries w ∈ P and w′ ∈ P ′ satisfying v′ = vww′. Then w′ =
w∗v∗v′ ∈ P ′ ∩ M since w, v, and v′ all lie in M . Thus w′ ∈ P ′ ∩ N1 ⊆ N(P ⊆ N1).
Then v = v′w′∗w∗ ∈ N(P ⊆ N1), proving that N(P ⊆ M) ⊆ N(P ⊆ N1). By assumption
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N(P ⊆ N1)
′′ is amenable so the same is true for its subalgebra N(P ⊆ M)′′. Thus M is

strongly solid. �

Remark 5.1.2. In particular, it follows that ifM is a factor sufficiently close to a free group
factor LFr, thenM is strongly solid, we can find masas A1, . . .Ar inM close to the canonical
generator masas in LFr, and these masas will have Pukánszky invariant {∞} (see Remark
4.2.6). Further, as the generator masas are maximal injective in LFr ([80]), we can argue in
a similar fashion to the previous theorem to deduce that each Ai is maximal injective in M .

5.2. Property Gamma and McDuff factors. In this section we examine factors close to
those with Property Gamma and factors close to McDuff factors. We begin by recording an
extension of Lemma 2.4.4.

Lemma 5.2.1. Let M and N be II1 factors represented nondegenerately on a Hilbert space
H and let γ and η be positive constants. Suppose that d(M,N) < γ < 1 and that we have
x1, x2 in the unit ball of M and y1, y2 in the unit ball of N with ‖xi− yi‖ ≤ η, i = 1, 2. Then

(5.2) ‖y1 − y2‖22,N ≤ ‖x1 − x2‖22,M + 8η + (8
√
2 + 8)γ.

Proof. Define s = y1 − y2 ∈ N and t = x1 − x2 ∈M , so that ‖s‖, ‖t‖ ≤ 2 and ‖s− t‖ ≤ 2η.
Let Φ be a state on B(H) extending τM . Then Lemma 2.4.4 gives

(5.3) |τN(s∗s)− Φ(s∗s)| ≤ (2
√
2 + 2)γ‖s∗s‖ ≤ (8

√
2 + 8)γ.

We also have

(5.4) |Φ(s∗s)− Φ(t∗t)| ≤ ‖(s∗ − t∗)s+ t∗(s− t)‖ ≤ 8η,

so

‖s‖22,N = τN (s
∗s) ≤ |Φ(s∗s)|+ |τN(s∗s)− Φ(s∗s)|

≤ |Φ(s∗s)− Φ(t∗t)|+ Φ(t∗t) + (8
√
2 + 8)γ

≤ ‖t‖22,M + 8η + (8
√
2 + 8)γ,(5.5)

since Φ and τM agree on M . This is (5.2). �

For von Neumann algebras M with separable predual, the definition of property Gamma
is equivalent to the condition M ′ ∩ Mω 6= CI for a nonprincipal ultrafilter ω on N (see
[101, Theorem XIV.4.7]). For II1 factors with nonseparable preduals this equivalence no
longer holds (see [36, Section 3]) and instead one must work with ultrafilters on sets of larger
cardinality. For simplicity, we restrict to the separable predual situation below. However the
argument can be modified to handle the nonseparable situation (with the same constants).

Proposition 5.2.2. Let M and N be II1 factors with separable preduals acting nondegener-
ately on a Hilbert space H with d(M,N) < γ for a constant γ < 1/190. Suppose that M has
property Γ. Then N also has property Γ.

Proof. Suppose thatM has property Γ and fix a nonprincipal ultrafilter ω on N. Murray and
von Neumann’s definition of property Γ [66] gives a sequence (un)

∞
n=1 of trace zero unitaries

such that u = (un) ∈ Mω ∩M ′. For each n, use Lemma 2.4.1 (i) to find a unitary vn ∈ N
with ‖un − vn‖ <

√
2γ and let v denote the class of (vn) in N

ω. Letting Φ denote a state on
B(H) extending τN , Lemma 2.4.4 gives the estimate

(5.6) |τM(un)− Φ(un)| ≤ (2
√
2 + 2)γ, n ∈ N,
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so that

(5.7) |τM(un)− τN(vn)| ≤ |τM(un)− Φ(un)|+ |Φ(un)− Φ(vn)| ≤ (3
√
2 + 2)γ.

Thus

(5.8) |τNω(v)| ≤ (3
√
2 + 2)γ.

Given a unitary w ∈ N , use Lemma 2.4.1 (i) to find a unitary w′ ∈M with ‖w′−w‖ <
√
2γ.

Then

(5.9) ‖w′un − wvn‖ ≤ ‖(w′ − w)un‖+ ‖w(un − vn)‖ ≤ 2
√
2γ

and similarly ‖unw′ − vnw‖ ≤ 2
√
2γ. Taking η = 2

√
2γ in Lemma 5.2.1 with x1 = w′un,

x2 = unw
′, y1 = wvn and y2 = vnw gives

(5.10) ‖wvn − vnw‖22,N ≤ ‖w′un − unw
′‖22,M + (24

√
2 + 8)γ.

Since limn→ω ‖w′un − unw
′‖2,M = 0 in Nω, we have

(5.11) ‖wvw∗ − v‖22,Nω = ‖wv − vw‖22,Nω ≤ (24
√
2 + 8)γ.

Let y be the unique element of minimal ‖ · ‖2,Nω -norm in conv2,N
ω{wvw∗ : w ∈ U(N)}. This

lies in Nω and uniqueness ensures that y ∈ Nω ∩N ′. It remains to check that y is nontrivial.
The estimate (5.11) gives

(5.12) ‖y − v‖22,Nω ≤ (24
√
2 + 8)γ,

and so

(5.13) ‖y‖2,Nω ≥ 1− ((24
√
2 + 8)γ)1/2

as ‖v‖2,Nω = 1. We can estimate

|τNω(y)| ≤ |τNω(v)|+ |τNω(y − v)|
≤ (3

√
2 + 2)γ + ‖y − v‖2,Nω

≤ (3
√
2 + 2)γ + ((24

√
2 + 8)γ)1/2,(5.14)

using (5.8), (5.13) and the Cauchy-Schwarz inequality. If y ∈ CINω , then y = τNω(y)INω so

(5.15) 1− ((24
√
2 + 8)γ)1/2 ≤ ‖y‖2,Nω ≤ (3

√
2 + 2)γ + ((24

√
2 + 8)γ)1/2.

Direct computations show that this is a contradiction when γ < 1/190, so that y is a
nontrivial element of N ′ ∩Nω. Therefore N has property Gamma. �

Corollary 5.2.3. Let M be a weakly Kadison-Kastler stable II1 factor with property Gamma
and separable predual. Then M is Kadison-Kastler stable.

Proof. Suppose that M ⊆ B(H) is a nondegenerate normal representation and that N ⊆
B(H) has d(M,N) small enough so that M ∼= N . Then N also has property Gamma, and
so Proposition 2.2.4 (ii) and Properties 2.2.2 (i) give dcb(M,N) ≤ 10d(M,N). If additionally
d(M,N) < 1/(10×301×136209), then Proposition 4.3.1 gives dimM(H) = dimN(H) and so
an isomorphism between M and N is spatially implemented on H [72] (see also [33, Section
6.4, Proposition 10]). �



KADISON–KASTLER STABLE FACTORS 41

We now turn to McDuff factors, defined as those II1 factors M with M ∼= M ⊗R, where
R is the hyperfinite II1 factor. In the separable predual case, one can use McDuff’s charac-
terization of these factors as those M for which M ′ ∩Mω is nonabelian [58], and transfer a
suitably noncommuting pair of centralizing sequences from a McDuff factorM into a nearby
factor N to see that N is also McDuff. The details are similar in style to Proposition 5.2.2.
However, by using the reduction techniques of Section 4, we can go further and show that if
M absorbs R tensorially, then so too does N , and that we can arrange to simultaneously pull
out the same tensor factor of R from M and N (after making a small unitary perturbation).
Recall from [67] that if N is a II1 factor and Q1 and Q2 are commuting subfactors of N ,
then N is generated by this pair if and only if N ∼= Q1⊗Q2.

Lemma 5.2.4. Let M be a McDuff factor with a separable predual acting nondegenerately
on a Hilbert space H and write M = M0 ⊗R for some II1 factor M0 on H. Suppose
that N is another II1 factor on H with d(M,N) < γ < 1/(305 × 903 × 47). Given an
amenable subalgebra P0 of M0 with P ′

0 ∩M0 ⊆ P0, there exists a unitary u ∈ (M ∪N)′′ with
‖u− IH‖ ≤ 150γ such that:

(i) writing R1 = uRu∗, we have R1 ⊆ N ;
(ii) N ∼= (R′

1 ∩N)⊗R1;
(iii) R′

1 ∩N ⊆
cb,(200

√
2+5)γ M0 and M0 ⊆cb,(200

√
2+5)γ R

′
1 ∩N ;

(iv) uP0u
∗ ⊆ R′

1 ∩N .

In particular N is McDuff.

Proof. AsM is McDuff it certainly has property Gamma and hence so too does N by Lemma
5.2.2. Thus M ⊂cb,5γ N and N ⊂cb,5γ M by Proposition 2.2.4 (ii). Set P = (P0∪R)′′ so that
P ′∩M ⊆ P . By Theorem 3.1.1 (i), there exists a unitary u ∈ (P ∪N)′′ with ‖u−IH‖ ≤ 150γ,
uPu∗ ⊆ N , and ‖uxu∗ − x‖ ≤ 100γ‖x‖ for x ∈ P . Set N1 = u∗Nu so that M ⊆cb,305γ N1,
N1 ⊆cb,305γ M and P ⊆ N1.

As uRu∗ ⊆100γ R, Lemma 2.4.5 (ii) gives R′ ∩M ⊆
cb,200

√
2γ+5γ (uRu∗)′ ∩ N . Similarly,

(uRu∗)′∩N ⊆
cb,200

√
2γ+5γ R

′∩M . In particular (uRu∗)′∩N is a factor by [51, Corollary A],
and hence so too is R′ ∩ N1. It remains to show that R and R′ ∩ N1 generate N1, as then
N1

∼= (R′ ∩N1)⊗R by [67].
By applying Theorem 4.3.3 (valid as 305γ < 1/(903 × 47)) we can find unital normal

representations π : M → B(K) and ρ : N1 → B(K) such that π|P = ρ|P and, writing
M2 = π(M) and N2 = ρ(N1), we also obtain that the algebras M2, M

′
2, N2 and N ′

2 have
common trace vector ξ on K. Moreover, M2 ⊂cb,β N2 and N2 ⊂cb,β M2 for β = 903× 305γ,
while JM2

π(P )JM2
= JN2

π(P )JN2
⊆ N ′

2. Write R2 = ρ(R) ⊆M2 ∩N2. Now fix x ∈ R′
2 ∩M2

and ε > 0. Choose y ∈ N2 such that ‖yξ − xξ‖K ≤ ε. For each unitary u ∈ R2, x commutes
with u and JN2

uJN2
∈ N ′

2. Therefore uJN2
uJN2

xξ = xuJN2
uJN2

ξ = xξ. Thus

(5.16) ‖xξ − uyu∗ξ‖K = ‖uJN2
uJN2

(xξ − yξ)‖K ≤ ε.

Now EN2

R′

2
∩N2

(y)ξ is the vector in K of minimal norm in the closed convex hull of {uyu∗ξ :

u ∈ U(R2)}, so

(5.17) ‖xξ − EN2

R′

2
∩N2

(y)ξ‖K ≤ ε.
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For any unitary v ∈ R2, we have ‖vxξ − vEN2

R′

2
∩N2

(y)ξ‖K ≤ ε. Since ε was arbitrary we

conclude that

K = ((R′
2 ∩M2) ∪ R2)′′ξ = Span{vxξ : v ∈ U(R2), x ∈ R′

2 ∩M2}
⊆ ((R′

2 ∩N2) ∪ R2)′′ξ.(5.18)

Since ξ is separating for N2, it follows that N2 = ((R′
2 ∩ N2) ∪ R2)

′′ just as in the proof of
Lemma 4.1.4 (iii). Thus N1 is generated by R and R′ ∩N1. �

Proposition 5.2.5. Suppose that M is a weakly Kadison-Kastler stable II1 factor. Then
M ⊗R is Kadison-Kastler stable, where R is the hyperfinite II1 factor.

Proof. Let δ > 0 be so small that, given a unital normal representation M ⊆ B(H), each II1
factor N0 ⊆ B(H) with d(M,N0) < δ is isomorphic to M . Now suppose that M ⊗R and N
are represented on K with d(M ⊗R,N) < γ for some γ < 1/(305× 903× 47). Lemma 5.2.4
shows that N ∼= N0⊗R1 for another copy of the hyperfinite II1 factor R1 and a II1 factor N0

with N0 ⊆
cb,(200

√
2+5)γ M0 and M0 ⊆

cb,(200
√
2+5)γ N0. Thus, provided 2((200

√
2 + 5)γ) < δ,

M0 and N0 are isomorphic, whence M and N are isomorphic. This shows that M ⊗R is
weakly Kadison Kastler stable. As M ⊗R has property Gamma, it is then Kadison-Kastler
stable by Corollary 5.2.3. �

Note that if M satisfies the conclusions of Part (3) of Theorem B, then strong Kadison-
Kastler stability of M ⊗R can also be established, see Proposition 6.3.7.

6. Kadison-Kastler stable factors

We now present the main results of the paper by exhibiting classes of actions giving
rise to Kadison-Kastler stable crossed product factors. In Section 6.1 we first show that
a von Neumann algebra close to a twisted crossed product II1 factor P ⋊α,ω Γ where P is
amenable must also be a twisted crossed product factor arising from the same action and
some cocycle ω′ which is uniformly close to ω. From this we are able to prove Part (1) of
Theorem B (Corollary 6.1.2), which in particular shows that crossed products L∞(X)⋊ Fr

are weakly Kadison-Kastler stable (Corollary 6.1.3). In Section 6.2 we use property Gamma
to obtain Kadison-Kastler stable factors, those that are spatially isomorphic to sufficiently
close neighbors. Corollary 6.2.1 proves Part (2) of Theorem B and we also discuss how to
produce examples of actions satisfying the hypothesis of this result. In Section 6.3 we turn
to strong Kadison-Kastler stability and prove Theorem A as Theorem 6.3.4 and Part (3)
of Theorem B as Theorem 6.3.2. Remark 6.3.6 sets out examples of factors to which these
results apply.

We then discuss what our methods give in more general situations arising from regular
subalgebras which are not twisted crossed products. Subsection 6.4 examines inclusions
A ⊆M of Cartan masas in II1 factors. Analogously to the twisted crossed product situation,
we show that if N is close toM , then every Cartan masa B in N close to A (these must exist
by the results of Sections 4.1 and 4.2) induces the same measured equivalence relation as the
original inclusion A ⊆M and, further, M and N arise from uniformly close cocycles on this
relation. Similar results hold when M contains a regular amenable irreducible subfactor.
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6.1. Weakly Kadison-Kastler stable crossed products. The work of Section 4 enables
us to transfer a twisted crossed product structure from a II1 factor to nearby factors. Recall
(see Section 2.5) that every 2-cocycle is cohomologous to a normalized 2-cocycle so there is
no loss of generality in only considering normalized cocycles below.

Theorem 6.1.1. Let α : Γ y P be a trace preserving, centrally ergodic, and properly outer
action of a countable discrete group Γ on a finite amenable von Neumann algebra P with
separable predual. Let ω ∈ Z2(Γ,U(Z(P ))) be a normalized 2-cocyle, write M = P⋊α,ωΓ and
suppose that M ⊆ B(H) is a unital normal representation. Let N be another von Neumann
algebra on H with d(M,N) < γ for some γ < 5.77× 10−16. Then there exists a normalized
2-cocycle ω′ ∈ Z2(Γ,U(Z(P ))) such that N ∼= P ⋊α,ω′ Γ and

(6.1) sup
g,h∈Γ

‖ω(g, h)− ω′(g, h)‖ < 14889γ < 8.6× 10−12.

Proof. By Proposition 2.5.3, M is a II1 factor and P ′ ∩M ⊆ P . The bound on γ ensures
that Kadison and Kastler’s stability of type classification from [51] applies and so N is also
a II1 factor. Since γ < 1/100, Theorem 3.1.1 (i) provides a unitary u ∈ (P ∪ N)′′ with
‖IH − u‖ ≤ 150γ such that P ⊆ N1 := u∗Nu. Moreover, we have M ⊂γ1 N1 ⊂γ1 M ,
where γ1 = 301γ. Write (ug)g∈Γ for the canonical bounded homogeneous orthonormal basis
of normalizers for P ⊆ M implementing the action α which satisfy uguh = ω(g, h)ugh for
g, h ∈ Γ. For g ∈ Γ, we can apply Lemma 3.2.1 (iii) to M and N1 to obtain a normalizer
wg ∈ N(P ⊆ N1) with

(6.2) ‖wg − ug‖ ≤ (4 + 2
√
2)γ1 < 1.

Thus, by Proposition 2.6.2, wg = ugpgp
′
g for some unitaries pg ∈ P and p′g ∈ P ′ with

‖pg − IH‖ ≤ 21/2‖wg − ug‖ ≤ 21/2(4 + 2
√
2)γ1. Write vg = wgp

∗
g = ugp

′
g ∈ N1 so that

vgxv
∗
g = ugxu

∗
g = αg(x) for all x ∈ P and

(6.3) ‖vg − ug‖ ≤ (1 +
√
2)(4 + 2

√
2)γ1 = (8 + 6

√
2)γ1 < 4963γ.

Since ue = IH, we may assume that ve = we = IH. For use in Lemma 6.3.1, note that if N
happens to already contain P then we can take N = N1 and u = IH, and the estimate in
(6.3) is replaced by

(6.4) ‖vg − ug‖ ≤ (8 + 6
√
2)γ < 16.5γ.

The bound on γ in the statement of the theorem is chosen so that γ1 < 1.74× 10−13 and
so Lemma 4.2.3 applies as P ′∩M ⊆ P . In particular P ′∩N1 ⊆ P , while Lemma 4.2.3 (viii)
and the estimate (6.3) show that (wg)g∈Γ is a bounded homogeneous orthonormal basis of
normalizers for P ⊆ N1. Then (vg)g∈Γ also has this property and so N1 is generated by P

and the normalizers (vg)g∈Γ. As we have EN1

P (vg) = 0 for g ∈ Γ \ {e} and vgxv
∗
g = αg(x)

for x ∈ P , Proposition 2.5.1 shows that N1 is isomorphic to the twisted crossed product
P ⋊α,ω′ Γ, where ω′ is given by

(6.5) ω′(g, h) = vgvhv
∗
gh ∈ U(Z(P )), g, h ∈ Γ.
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Since we chose ve = IH, this 2-cocycle is normalized and applying the estimate (6.3) three
times gives

‖ω(g, h)− ω′(g, h)‖ = ‖uguhu∗gh − vgvhv
∗
gh‖

≤ ‖ug − vg‖+ ‖uh − vh‖+ ‖u∗gh − v∗gh‖
< 3× 4963γ = 14889γ

< 8.6× 10−12, g, h ∈ Γ.(6.6)

Since N and N1 are unitarily conjugate, N ∼= P ⋊α,ω′ Γ for this 2-cocycle. �

We obtain weakly Kadison-Kastler stable factors whenever we can guarantee that the
uniformly close cocycles ω and ω′ in Theorem 6.1.1 are cohomologous. This happens when
the comparison map from bounded to usual cohomology vanishes in degree 2. In particular,
the next corollary proves Part (1) of Theorem B.

Corollary 6.1.2. Let α : Γ y P be a trace preserving, centrally ergodic, and properly outer
action of a countable discrete group Γ on a finite amenable von Neumann algebra P with
separable predual. Suppose that one of the comparison maps

(6.7) H2
b (Γ,Z(P )sa) → H2(Γ,Z(P )sa)

or

(6.8) H2
b (Γ, L

2(Z(P )sa)) → H2(Γ, L2(Z(P )sa))

vanishes. For any ω ∈ H2(Γ,U(Z(P ))), let M be the crossed product II1 factor P ⋊α,ω Γ,
faithfully, normally, and nondegenerately represented on a Hilbert space H. Then M has the
property that M ∼= N whenever N is a von Neumann algebra on H satisfying d(M,N) <
5.77× 10−16, and thus M is weakly Kadison-Kastler stable.

Proof. Let M := P ⋊α,ω Γ for a normalized 2-cocycle ω and suppose that M is faithfully
normally and nondegenerately represented on H. Given another von Neumann algebra N
on H with d(M,N) < 5.77 × 10−16, we have N ∼= P ⋊α,ω′ Γ for some normalized ω′ ∈
Z2(Γ,U(Z(P ))) satisfying (6.1) by Theorem 6.1.1. Define a 2-cocycle ν ∈ Z2(Γ,U(Z(P )))
by ν(g, h) = ω(g, h)ω′(g, h)∗ so that

(6.9) sup
g,h∈Γ

‖ν(g, h)− IP‖ < 8.6× 10−12 <
√
2.

By Lemma 2.5.2 (i), ψ := −i log ν defines a bounded 2-cocycle in Z2
b (Γ,Z(P )sa). If we

assume that the comparison map (6.7) vanishes, then ψ = ∂φ for some φ ∈ C1(Γ,Z(P )sa).
In this case Lemma 2.5.2 (ii) shows that ν = ∂eiφ so that ω and ω′ represent the same
element of H2(Γ,U(Z(P )). By Proposition 2.5.1 (ii), M and N are isomorphic.

When the comparison map (6.8) vanishes, then we regard ψ as taking values in L2(Z(P )sa)
and use Lemma 2.5.2 (iii) to see that ν is trivial in H2(Γ,U(Z(P ))). Again M and N are
isomorphic by Proposition 2.5.1 (ii). �

Free groups have cohomological dimension one, so H2(Fr,Z(P )sa) = 0 for all actions
α : Fr y P . Consequently, the comparison map (6.7) is zero and the resulting crossed
products are weakly Kadison-Kastler stable. In particular all crossed products L∞(X)⋊αFr

for free, ergodic, and probability measure preserving actions are weakly Kadison-Kastler
stable.
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Corollary 6.1.3. Let Fr be a free group of rank r = 2, 3, . . . ,∞ and let α : Fr y P be a
trace preserving, centrally ergodic, properly outer action on a finite amenable von Neumann
algebra P with separable predual. Then P ⋊α Fr is weakly Kadison-Kastler stable.

The following corollary is the wreath product version of Kadison’s question about algebras
close to free group factors. Note that for each r, Bowen has shown that L(Γ1 ≀Fr) ∼= L(Γ2 ≀Fr)
for nontrivial abelian groups Γ1 and Γ2, [5] (see [102]).

Corollary 6.1.4. Let Γ be a nontrivial abelian group and let r = 2, 3, . . . ,∞. Then L(Γ ≀Fr)
is weakly Kadison-Kastler stable.

Proof. Since L(Γ ≀ Fr) is a crossed product L(ΓFr) ⋊ Fr arising from a free, ergodic, trace
preserving action, the result follows from Corollary 6.1.3. �

Corollary 6.1.2 also applies when the bounded cohomology group H2
b (Γ,Z(P )sa) = 0 or

when H2
b (Γ, L

2(Z(P )sa)) = 0, for example when Γ = SLn(Z) for n ≥ 3. However for these
groups we can use the vanishing of H2

b (Γ,Z(P )sa) = 0 to extract more information, see
Section 6.3.

6.2. Kadison-Kastler stable factors. We obtain Kadison-Kastler stable factors from the
examples in Section 6.1 by imposing additional conditions which ensure that the isomorphism
in Corollary 6.1.2 is spatially implemented. In particular, as factors with property Gamma
have the similarity property, one can convert weak Kadison-Kastler stability to Kadison-
Kastler stability. The corollary below proves Part (2) of Theorem B.

Corollary 6.2.1. Let α : Γ y P be a properly outer, centrally ergodic, trace preserving
action of a countable discrete group on a finite amenable von Neumann algebra P with sepa-
rable predual and suppose that one of the comparison maps H2

b (Γ,Z(P )sa) → H2(Γ,Z(P )sa)
or H2

b (Γ, L
∞(Z(P )sa)) → H2(Γ, L2(Z(P )sa)) vanishes. If the crossed product factor P ⋊α Γ

has property Gamma, then it is Kadison-Kastler stable.

Proof. Since the crossed product P ⋊α Γ has property Gamma, this follows by combining
Corollary 6.1.2, which shows that such a crossed product is weakly Kadison-Kastler stable,
and Corollary 5.2.3. �

Remark 6.2.2. One can obtain explicit constants in the previous corollary, which are better
than those appearing in Corollary 6.1.2 by arguing as follows. WhenM = P⋊αΓ and N is an
algebra sufficiently close toM on the Hilbert space H, note that N also has property Gamma
by Proposition 5.2.2. Consequently M and N are completely close by Proposition 2.2.4. We
can then use Theorem 4.3.3 in place of Lemma 4.2.3 in the proof of Theorem 6.1.1 to obtain
that M and N are isomorphic. Since Proposition 4.3.1 shows that dimHM = dimHN , this
isomorphism is automatically spatially implemented on H. The hypotheses of all the results
quoted in this brief sketch are met when d(M,N) < (301× 136209)−1.

We now turn to examples where Corollary 6.2.1 applies. Consider a II1 factor M arising
as a crossed product M = P ⋊α Γ for some trace preserving action of a countable discrete
group on a finite von Neumann algebra P . Assume further that the group Γ is not inner
amenable in the sense of [34] (such as a free group of rank at least 2 [34] or an ICC group
with property T [1, Theorem 11]). Under this hypothesis, any central sequence (xn)

∞
n=1 in

M is asymptotically contained in P (this assertion is proved in [40, Lemma 1] when Γ is a
free group and the method of proof works whenever Γ is not inner amenable). Consequently
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we must look for examples where centralizing sequence for M can be found in P . First we
consider the case when P is abelian.

Given an ergodic measure preserving action α : Γ y (X, µ), there are nontrivial central-
izing sequences for the crossed product factor L∞(X)⋊α Γ inside L∞(X) if and only if the
action fails to be strongly ergodic [30, 92]. This means that there is a sequence (Yn)

∞
n=1 of

Borel subsets of X satisfying the asymptotic invariance condition µ(Yn∆(g · Yn)) → 0 for
all g ∈ Γ which are nontrivial in the sense that lim infn µ(Yn)(1 − µ(Yn)) > 0. When Γ
has Každan’s property T every ergodic action is strongly ergodic [91], and so there are no
actions of SLn(Z) for n ≥ 3 to which the previous corollary applies. Conversely, Connes and
Weiss show that if Γ does not have property T, then Γ admits ergodic (and in fact weakly
mixing) actions which are not strongly ergodic ([30]). Further, these actions can be taken to
be essentially free (see [13, Proposition 2.2.3]). In particular, the free groups Fr admit free,
ergodic measure preserving actions which fail to be strongly ergodic and so Corollary 6.2.1
applies to the crossed products arising from these actions. As noted in [70, Section 5] one
can construct such actions of free groups which are additionally profinite.

Corollary 6.2.3. Let α : Fr y (X, µ) be a free, ergodic, probability measure preserving
action which is not strongly ergodic. Then L∞(X, µ)⋊α Γ is Kadison-Kastler stable.

Remark 6.2.4. Corollary 6.2.1 can also be used for actions on nonabelian von Neumann
algebras. Just as in the abelian situation, when Γ does not have property T there exist
properly outer actions α : Γ y R on the hyperfinite II1 factor for which the resulting crossed
product has property Gamma, as we now explain. An outer action β : Γ y R is said to
be strong if every bounded asymptotically invariant sequence (xn)

∞
n=1 (as defined by the

requirement that ‖βg(xn)− xn‖2 → 0 for all g ∈ Γ) is equivalent to a sequence in the fixed
point algebra RΓ. Recall that if Γ does not have property T, then there exists an outer
action β : Γ y R that is not strong ([2], noting that the construction in (ii) on p. 208 is
outer). Thus there exists a bounded asymptotically invariant sequence (xn)

∞
n=1 that does not

represent a scalar multiple of the identity in Rω. Now consider the infinite tensor product
R⊗∞ and the action α : Γ y R⊗∞ given by αg(

⊗
m am) =

⊗
m βg(am). This is easily seen to

be an outer action. Defining yn = I
⊗(n−1)
R ⊗xn⊗ IR⊗· · · , we obtain a nontrivial centralizing

sequence (yn)n in R⊗∞ for R⊗∞⋊αΓ and so the crossed product factor has property Gamma.

We end this section by noting that the tensor product of any of the weakly Kadison-Kastler
stable factors from Section 6.1 with the hyperfinite II1 factor is automatically Kadison-
Kastler stable.

Corollary 6.2.5. Let α : Γ y P be a trace preserving, centrally ergodic, and properly
outer action of a countable discrete group Γ on a finite amenable von Neumann algebra P
with separable predual. Suppose that one of the comparison maps (6.7) or (6.8) vanishes
(as happens when Γ is a free group). Write M = P ⋊α Γ. Then the II1 factor M ⊗R is
Kadison-Kastler stable, where R is the hyperfinite II1 factor.

Proof. The factors M are weakly Kadison-Kastler stable by Corollary 6.1.2, so M ⊗R is
Kadison Kastler stable by Lemma 5.2.5. �

6.3. Strongly Kadison-Kastler stable crossed products. We now turn to the situation
where the bounded cohomology groups H2

b (Γ,Z(P )sa) vanish. In this case the isomorphisms
we obtain between a crossed product factor and a nearby factor are uniformly close to the
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inclusion map (see Theorem 6.3.2 below). This enables us to produce strongly Kadison-
Kastler stable factors in Theorem 6.3.4 below which proves Theorem A. We first examine
the situation when the crossed product factor lies in standard position.

Lemma 6.3.1. Let α : Γ y P be a trace preserving, centrally ergodic and properly outer
action of a countable discrete group Γ on a finite amenable von Neumann algebra P with
separable predual. Suppose that H2

b (Γ,Z(P )sa) = 0. Given a normalized 2-cocycle ω ∈
Z2(Γ,U(Z(P ))), write M = P ⋊α,ω Γ and suppose that M ⊆ B(K) is represented in standard
position with tracial vector ξ used to define the modular conjugation operator JM and the
orthogonal projection eP onto Pξ. Let N ⊆ B(K) be another von Neumann algebra with
M ⊆β N and N ⊆β M for β < 1/47 and such that P ⊆ N and JMPJM ⊆ N ′. Then there
exists a unitary U ∈ P ′ ∩ 〈M, eP 〉 such that UMU∗ = N , and

(6.10) ‖U − IK‖ ≤ (8 + 6
√
2)β + 9K(3 + 2

√
2)β

where K is the constant (depending only on the action α) given by the open mapping theorem
such that (2.29) holds.

Proof. Write (ug)g∈Γ for the canonical unitaries inM = P⋊α,ωΓ satisfying uguh = ω(g, h)ugh
for g, h ∈ Γ. Just as in the proof of Theorem 6.1.1 (see equation (6.4)), we can find unitaries
(vg)g∈Γ in N satisfying

(6.11) ‖vg − ug‖ ≤ (8 + 6
√
2)β

such that ve = ue = IK, vgxv
∗
g = ugxu

∗
g = αg(x) for x ∈ P and (vg)g∈Γ forms a bounded

homogeneous orthonormal basis of normalizers for P ⊆ N . By Proposition 2.5.1, N ∼=
P ⋊α,ω′ Γ where ω′ is the normalized 2-cocycle given by ω′(g, h) = vgvhv

∗
gh. Then ν(g, h) =

ω(g, h)ω′(g, h)∗ has supg,h∈Γ ‖ν(g, h)− IP‖ < 3(8 + 6
√
2)β following the argument of (6.6).

Thus, defining ψ = −i log ν, we obtain a bounded 2-cocycle in Z2
b (Γ,Z(P )sa) by Lemma

2.5.2 (i) and the estimate ‖ψ‖ ≤ 2 sin−1(3(8+ 6
√
2)β/2) follows from the relation |1− eit| =

2| sin(t/2)|. Note that 3(4 + 3
√
2)β < 0.53. For 0 ≤ t ≤ 0.53, the convexity of sin−1(t)

yields sin−1(t) ≤ (sin−1(0.53)/0.53))t, from which sin−1(t) ≤ 3t/(2
√
2) follows by direct

calculation. By hypothesis, ψ = ∂φ for some φ ∈ C1
b (Γ,Z(P )sa) with

(6.12) ‖φ‖ ≤ K‖ψ‖ ≤ 2K sin−1(3(4 + 3
√
2)β) ≤ 9K(4 + 3

√
2)β/

√
2 = 9K(3 + 2

√
2)β.

Lemma 2.5.2 (ii) gives ν(g, h) = ei∂φ(g,h). We obtain the estimate

(6.13) ‖IP − eiφ(g)‖ ≤ 9K(3 + 2
√
2)β, g ∈ Γ,

from |1− eit| = 2| sin(t/2)| ≤ |t|, so defining v′g = eiφ(g)vg, we have

‖v′g − ug‖ ≤ ‖vg − ug‖+ ‖eiφ(g) − I‖
≤ (8 + 6

√
2)β + 9K(3 + 2

√
2)β, g ∈ Γ.(6.14)

As in Proposition 2.5.1 (ii), the unitaries (v′g)g∈Γ also satisfy v′gxv
′
g
∗ = αg(x) for x ∈ P and

since v′gv
′
hv

′
gh

∗ = ω(g, h), it follows that N is isomorphic to P ⋊α,ω Γ = M . Further, the
construction of Proposition 2.5.1 (i) gives an isomorphism θ : M = P ⋊α,ω Γ → N with
θ(x) = x for x ∈ P and θ(ug) = v′g for g ∈ Γ.

Now M and N are both in standard position on K and β < 1/47 so Lemma 4.1.4 shows
that ξ is also a tracial vector for N and N ′. This allows us to define a unitary W ∈ B(K) by
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W (mξ) = θ(m)ξ for m ∈ M and it is easy to check that θ(m) = WmW ∗ for m ∈ M . Note
that

(6.15) xWmξ = xθ(m)ξ = θ(xm)ξ = Wxmξ = Wx(mξ), x ∈ P, m ∈M,

so that W ∈ P ′. Similarly, as θ(M) = N ⊆ (JMPJM)′,

JMxJMWmξ = JMxJMθ(m)ξ = θ(m)JMxJMξ = θ(m)x∗ξ

= θ(mx∗)ξ = Wmx∗ξ =WJMxJMmξ, x ∈ P, m ∈M,(6.16)

so that W ∈ (JMPJM)′ = 〈M, eP 〉. In this way W ∈ P ′ ∩ 〈M, eP 〉.
For g ∈ Γ, write eg = ugePu

∗
g = v′geP v

′
g
∗. Since P ′ ∩M ⊆ P (as α is centrally ergodic

and properly outer), the projections eg are central in P ′ ∩ 〈M, eP 〉 by [35, Lemma 3.2] and
(P ′ ∩ 〈M, eP 〉)eg = Z(P )eg by [35, Lemma 3.4]. Therefore, we can write W =

∑
g∈Γ wgeg for

some unitaries wg ∈ Z(P ) and with strong∗-convergence.
For each h ∈ Γ, we have WuhW

∗ = θ(uh) = v′h so that

‖W − uhWu∗h‖ = ‖WuhW
∗ − uh‖ = ‖uh − v′h‖ ≤ (8 + 6

√
2)β + 9K(3 + 2

√
2)β.(6.17)

Since

uhWu∗h = uh

(
∑

g∈Γ
wgeg

)
u∗h =

∑

g∈Γ
αh(wg)uhegu

∗
h

=
∑

g∈Γ
αh(wg)ehg =

∑

g∈Γ
αh(wh−1g)eg,(6.18)

we can estimate

sup
g∈Γ

‖αh(wh−1g)− wg‖ =‖
∑

g∈Γ
(αh(wh−1g)− wg)eg‖

=‖W − uhWu∗h‖ ≤ (8 + 6
√
2)β + 9K(3 + 2

√
2)β, h ∈ Γ.(6.19)

Taking g = h above, we get

(6.20) sup
h∈Γ

‖αh(w1Γ)− wh‖ ≤ (8 + 6
√
2)β + 9K(3 + 2

√
2)β.

For any z ∈ Z(P ), we have JMz
∗JMeP = zeP . Hence,

JMw1ΓJMeg = JMw1ΓJMugePu
∗
g = ugJMw

∗
1Γ
JMePu

∗
g

= ugw1ΓePu
∗
g = αg(w1Γ)eg, g ∈ Γ.(6.21)

Define a unitary W1 = JMw1ΓJM ∈ JMZ(P )JM ⊆ P ′ ∩ 〈M, eP 〉. By the calculation above

(6.22) W1 =
∑

g∈Γ
JMw1ΓJMeg =

∑

g∈Γ
αg(w1Γ)eg,

so that ‖W1 −W‖ ≤ (8 + 6
√
2)β + 9K(3 + 2

√
2β) by (6.20). Since W1 ∈ JMZ(P )JM ⊆

JMPJM ⊆ N ′, we have θ = Ad(W ∗
1W ). By defining U = W ∗

1W , we have θ = Ad(U) and
‖U − IK‖ = ‖W1 −W‖ ≤ (8 + 6

√
2)β + 9K(3 + 2

√
2)β. �

The reduction procedure of Section 4 can now be used to prove Part (3) of Theorem B.
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Theorem 6.3.2. Let α : Γ y P be a trace preserving, centrally ergodic and properly outer
action of a countable discrete group Γ on a finite amenable von Neumann algebra P with
separable predual. Suppose that H2

b (Γ,Z(P )sa) = 0 and let K be the constant (depending only
on the action α) given by the open mapping theorem such that (2.29) holds. LetM = P⋊α,ωΓ.
Then, given a faithful unital normal representation M ⊆ B(H) and another von Neumann
algebra N ⊆ B(H) with d(M,N) < γ < 5.77× 10−16, there is a ∗-isomorphism θ : M → N
with

(6.23) ‖θ(x)− x‖ < 902γ + (17 + 12
√
2 + 105K)× 50948× (301γ)1/2, x ∈M, ‖x‖ ≤ 1.

Proof. Take such a crossed product M . Suppose that M ⊆ B(H) is a faithful normal
nondegenerate representation and suppose that N ⊆ B(H) is another von Neumann algebra
acting nondegenerately on H with d(M,N) < γ < 5.77× 10−16. By Theorem 3.1.1 (i), there
is a unitary u ∈ (M ∪ N)′′ with ‖u − IH‖ ≤ 150γ and uPu∗ ⊆ N . Set N1 = u∗Nu so that
P ⊆ M ∩N1. Then d(M,N1) ≤ 301γ. By Lemma 4.2.3, we can find a Hilbert space K and
faithful normal ∗-representations π :M → B(K) and ρ : N1 → B(K) so that:

(i) π(M) and ρ(N1) are in standard position on K with common tracial vector ξ for
π(M), π(M)′, ρ(N1), and ρ(N1)

′;
(ii) π(M) ⊂β ρ(N1) and ρ(N1) ⊂β π(M) for some β satisfying

β < 50948× (301γ)1/2 < 1/47;

(iii) Whenever x ∈ M and y ∈ N1 have ‖x‖, ‖y‖ ≤ 1 and ‖x − y‖ < δ for some δ > 0, it
follows that ‖π(x)− ρ(y)‖ ≤ δ + β.

(iv) π|P = ρ|P ;
(v) 〈π(M), eπ(P )〉 = 〈ρ(N1), eπ(P )〉, where these basic constructions are performed with

respect to ξ.

Condition (v) ensures that, working with the modular conjugation operators induced by ξ,
we have Jπ(M)π(P )Jπ(M) = Jρ(N1)π(P )Jρ(N1) ⊆ ρ(N1)

′. Then conditions (i), (ii) and (iv)
allow us to apply Lemma 6.3.1 to π(M) and ρ(N1) on K. Consequently there is a unitary
U ∈ π(P )′ ∩ 〈π(M), eπ(P )〉 such that Uπ(M)U∗ = ρ(N1) and ‖U − IK‖ ≤ (8 + 6

√
2)β +

9K(3+ 2
√
2)β. Define an isomorphism θ1 :M → N1 by ρ

−1 ◦Ad(U) ◦ π. Given x ∈M with
‖x‖ ≤ 1, fix y ∈ N1 with ‖x− y‖ ≤ 301γ. Then ‖π(x)− ρ(y)‖ ≤ 301γ + β so that

‖θ1(x)− y‖ = ‖Uπ(x)U∗ − ρ(y)‖ ≤ 2‖U − IK‖+ ‖π(x)− ρ(y)‖
≤ (16 + 12

√
2 + (54 + 36

√
2)K)β + 301γ + β

< (17 + 12
√
2 + 105K)β + 301γ.(6.24)

Finally, define an isomorphism θ :M → N by θ = Ad(u) ◦ θ1. This satisfies
‖θ(x)− x‖ ≤ 2‖u− IH‖+ ‖θ1(x)− y‖+ ‖y − x‖

< 902γ + (17 + 12
√
2 + 105K)β

< 902γ + (17 + 12
√
2 + 105K)× 50948× (301γ)1/2, x ∈M, ‖x‖ ≤ 1,(6.25)

where y ∈ N1 with ‖y‖ ≤ 1 is chosen such that ‖x−y‖ ≤ 301γ. This completes the proof. �

The collection of groups all of whose actions satisfy the hypotheses of Theorem 6.3.2
contains SLn(Z) for n ≥ 3 (see subsection 2.7). In particular, for n ≥ 3, crossed products
of the form L∞(X, µ)⋊α SLn(Z) arising from free, ergodic, probability measure preserving
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actions have the property that sufficiently close algebras are isomorphic via an isomorphism
close to the inclusion map. There is a family with cardinality that of the continuum of
pairwise nonisomorphic factors arising in this fashion (see Remark 6.3.6 below).

Corollary 6.3.3. For n ≥ 3, let α : SLn(Z) y P be a centrally ergodic, properly outer
trace preserving action on a finite amenable von Neumann algebra P with separable predual.
For each ε > 0, there exists δ > 0 with the following property: given a unital normal
representation ι : P ⋊α Γ → B(H) and a II1 factor N ⊆ B(H) with d(ι(P ⋊α Γ), N) < δ,
there exists a surjective ∗-isomorphism θ : P ⋊α Γ → N with ‖θ − ι‖ < ε.

We now turn to examples of nonamenable II1 factors which satisfy the strongest form of
the Kadison-Kastler conjecture and prove Theorem A. Such factors must inevitably have
the similarity property [11]. Due to the presence of property T, we cannot construct crossed
product factors P ⋊α SLn(Z) for n ≥ 3 with property Gamma (see Section 6.2 above), so
we obtain the centralizing sequences which give the similarity property by tensoring these
crossed product factors with the hyperfinite II1 factor.

Theorem 6.3.4. Let α : Γ y P0 be a trace preserving, centrally ergodic and properly outer
action of a countable discrete group Γ on a finite amenable von Neumann algebra P0 with
separable predual and suppose that H2

b (Γ,Z(P0)sa) = 0. Let M = (P0 ⋊α Γ)⊗R, where R
denotes the hyperfinite II1 factor. Then M is strongly Kadison-Kastler stable.

Precisely, let K be the constant (depending only on the action α) given by the open mapping
theorem such that (2.29) holds for ψ ∈ Z2

b (Γ,Z(P )sa). If M ⊆ B(H) is a unital normal
representation of M and N ⊆ B(H) is another von Neumann algebra acting on H with
d(M,N) < γ, where γ satisfies the inequality

(6.26) (9356605 + 28918575K)γ < 2/5,

then there exists a unitary U ∈ B(H) with UMU∗ = N and

(6.27) ‖U − IH‖ ≤ (33080745 + 102242603K)γ.

Proof. Write M0 = P0 ⋊α Γ so that M = M0⊗R. Now suppose that M is represented as a
unital von Neumann subalgebra of B(H) and N is another von Neumann algebra on H with
d(M,N) < γ, where γ satisfies (6.26). For each 1-cochain φ : Γ → Z(P0)sa, the inequality
‖∂φ‖ ≤ 3‖φ‖ implies that K ≥ 1/3, so γ < 1/(305 × 903 × 47) follows from (6.26) and
the hypotheses of Lemma 5.2.4 are satisfied. Thus there exists a unitary u ∈ (M ∪ N)′′

with ‖u − IH‖ ≤ 150γ such that uRu∗ ⊆ N , P0 ⊆ R′ ∩ u∗Nu and N is generated by the
subfactors (uRu∗)′ ∩N and uRu∗. In particular N ∼= ((uRu∗)′ ∩ N)⊗ uRu∗ by [67] and so
N is McDuff. Since M and N have property Gamma, Proposition 2.2.4 (ii) gives the near
inclusions M ⊆cb,5γ N and N ⊆cb,5γ M .

Write N1 = u∗Nu and P = (P0 ∪ R)′′ so that P ⊆ N1 ∩M and N1 is generated by the
commuting algebras R′ ∩N1 and R on H. Since M ⊆cb,305γ N1 and N1 ⊆cb,305γ M , Lemma
2.4.5 (ii) givesM0 = R′∩M ⊆cb,305γ R

′∩N1 andR
′∩N1 ⊆cb,305γ M0. Proposition 2.2.3 induces

the near inclusions M ′ ⊆cb,305γ N
′
1 and N

′
1 ⊆cb,305γ M

′. By construction P0 ⊆M0∩ (R′∩N1).
By Theorem 4.3.3, applied with γ1 = 305γ replacing γ (valid as 305γ < 1/(903 × 47)),

there exist representations π : M → B(K) and ρ : N1 → B(K) which agree on P and such
that:

(i) there is a tracial vector ξ ∈ K for π(M), π(M)′, ρ(N1) and ρ(N1)
′;

(ii) Jπ(M)π(P )Jπ(M) ⊆ ρ(N1)
′;
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(iii) π(M) ⊆β ρ(N1) and ρ(N1) ⊆β π(M) for β = 903γ1 = 275415γ;
(iv) whenever x ∈ M and y ∈ N1 satisfy ‖x‖, ‖y‖ ≤ 1 and ‖x − y‖ ≤ δ, it follows that

‖π(x)− ρ(y)‖ ≤ δ + 903γ1.

Since π(M) is in standard position on K with tracial vector ξ, uniqueness up to spatial

isomorphism allows us to assume that K factorizes as K1 ⊗ K2, where K1 = π(M0 ⊗ IR)ξ

and K2 = π(IM0
⊗R)ξ and with the following additional properties. The vector ξ factorizes

as ξ1 ⊗ ξ2, π(M0) acts in standard position on K1 with respect to ξ1 and π(R) acts in
standard position on K2 with respect to ξ2. Consequently, with respect to this factorization,
π(R)′∩(Jπ(M)π(R)Jπ(M))

′ = B(K1)⊗CIK2
. Since Jπ(M)π(R)Jπ(M) ⊆ ρ(N1)

′, we have π(R)′∩
ρ(N1) ⊆ π(R)′ ∩ (Jπ(M)RJπ(M))

′ = B(K1) ⊗ CIK2
and so the factorization of N1 = N0⊗R

respects the decomposition of K = K1 ⊗K2.
It follows that π(M0) and ρ(N0) can be regarded as represented on K1 where ξ1 is a

tracial vector for π(M0), π(M0)
′, ρ(N0), and ρ(N0)

′. Further, π(P0) ⊆ π(M0) ∩ ρ(N0) and
Jπ(M0)π(P0)Jπ(M0) ⊆ ρ(N0)

′, where Jπ(M0) is the modular conjugation operator on K1 defined
with respect to ξ1. Thus Lemma 6.3.1 gives a unitary u0 ∈ B(K1) with u0π(M0)u

∗
0 = ρ(N0)

and ‖u0 − IK1
‖ ≤ (8 + 6

√
2 + 9K(3 + 2

√
2))β. Define u1 = u0 ⊗ IK2

so that u1 is a unitary
on K with u1π(M)u∗1 = ρ(N1) and ‖u1 − IK‖ ≤ (8 + 6

√
2 + 9K(3 + 2

√
2))β.

Define θ = ρ−1 ◦ Ad(u1) ◦ π : M → N1. For a contraction x ∈ M , choose a contraction
y ∈ N1 with ‖x − y‖ ≤ 301γ (possible as d(M,N) < γ and ‖u − IH‖ ≤ 150γ). Estimating
in a very similar fashion to the end of the proof of Theorem 6.3.2 shows that

‖θ(x)− y‖ = ‖u1π(x)u∗1 − ρ(y)‖ ≤ 2‖u1 − IH‖+ ‖π(x)− ρ(y)‖
< (16 + 12

√
2 + 105K)β + 301γ + β < (9356304 + 28918575K)γ.(6.28)

Thus

(6.29) ‖θ(x)− x‖ ≤ ‖θ(x)− y‖+ ‖y − x‖ ≤ (9356605 + 28918575K)γ.

By hypothesis this last quantity is less than 2/5, so Lemma 2.2.6 (ii) applies. Therefore,
there exists a unitary u2 on H with θ = Ad(u2) and

(6.30) ‖u2 − IH‖ ≤ 2−1/2 × 5× (9356605 + 28918575K)γ ≤ (33080595 + 102242603K)γ.

Write U = uu2 so that UMU∗ = N and

(6.31) ‖U − IH‖ ≤ ‖u2 − IH‖+ ‖u− IH‖ ≤ (33080745 + 102242603K)γ,

establishing (6.27) as required. �

Theorem A now follows immediately from Theorem 6.3.4 and Theorem 2.7.1.

Corollary 6.3.5. Let n ≥ 3 and Γ = SLn(Z). Given any free, ergodic, measure preserving
action α : Γ y (X, µ) on a standard probability space, the II1 factor (L∞(X, µ)⋊α Γ)⊗R is
strongly Kadison-Kastler stable.

Remark 6.3.6. There are a continuum of pairwise nonisomorphic II1 factors to which the
previous corollary applies. Let us specialize to the case when P0 = L∞(X, µ) and the action
α is a Bernoulli shift (meaning that (X, µ) arises from an infinite product (X0, µ0)

Γ = {f :
Γ → X0} indexed by the group Γ, and Γ acts on X by translation: (g · f)(h) = f(g−1h)). In
[83, 84] Popa established a breakthrough superrigidity result for a class of actions including
Bernoulli actions Γ y (X, µ) of ICC groups with property T ([84, Theorem 0.1]): given
two such actions Γ y (X, µ) and Λ y (Y, ν), if the crossed product factor L∞(X, µ)⋊ Γ is
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isomorphic to an amplification (L∞(Y, ν) ⋊ Λ)t for some t > 0 (the amplification M t of a
II1 factor is a factor p(M ⊗Mn)p, where n ∈ N has n > t and the normalized trace of the
projection p inM⊗Mn is t/n), then t = 1, Γ ∼= Λ and the actions Γ y (X, µ) and Λ y (Y, ν)
are conjugate. This result has recently been extended by Ioana [42] to allow Λ y (Y, ν) to be
any free ergodic probability measure preserving action of a countable discrete group. At the
level of actions, Bowen introduced in [4] an entropy invariant for measure preserving actions
of sofic groups (a class of groups including all residually finite groups, and hence SLn(Z) for
n ≥ 3). One of many consequences of this work is that conjugacy of two Bernoulli shifts
Γ y (X0, µ0)

Γ and Γ y (Y0, ν0)
Γ of a sofic group over base spaces with finite entropy implies

that the entropies H(X0, µ0) and H(Y0, ν0) are equal ([4, Theorem 1.1]).
By considering a family of base spaces on which the entropy takes all values in [0,∞), the

results discussed above show that there is a family F with cardinality equal to that of the
continuum such that F consists of II1 factors of the form L∞(X, µ)⋊α SL3(Z) arising from
Bernoulli shifts such that no two are isomorphic even after amplification. Since SL3(Z) has
property T, these factors cannot have property Gamma. Given II1 factorsM1 andM2 without
property Gamma, Theorem 5.1 of [85] shows that ifM1⊗R ∼=M2⊗R, thenM1 is isomorphic
to an amplification of M2. Consequently the elements of the family FR = {M ⊗R :M ∈ F}
are pairwise nonisomorphic.

The following result is obtained in exactly the same way as the deduction of Theorem
6.3.4 from Lemma 6.3.1. We omit the details.

Proposition 6.3.7. Suppose that M ⊆ B(L2(M)) is a II1 factor with the property that for
ε > 0, there exists δ > 0 such that given a II1 factor N ⊆ B(L2(M)) with d(M,N) < δ, then
there is a unitary u ∈ B(L2(M)) with uMu∗ = N and ‖u − IL2(M)‖ ≤ ε. Then M ⊗R is
strongly Kadison Kastler stable.

6.4. Type II1 Measured equivalence relations. In their seminal papers [37, 38] Feldman
and Moore assign cohomology groups to measurable equivalence relations and generalize the
twisted crossed product construction to produce an inclusion of a Cartan masa inside a von
Neumann algebra from a countable measured equivalence relation and (the orbit of) a certain
element of 2-cohomology. Conversely, they show that an inclusion A ⊆ M of a Cartan masa
inside a von Neumann algebra is determined by this data. In this subsection, we work in
this more general context. We show that close inclusions of Cartan masas in II1 factors give
rise to isomorphic relations and can be represented by uniformly close cocycles.

We first recall from [38] how to associate a measurable equivalence relation to an inclusion
A ⊆M of a Cartan masa in a II1 factor ([38] works in the context of arbitrary von Neumann
algebras, but we restrict to the factor case for simplicity and the finite case so we can apply
the results of Section 4). First we place M in standard position on H and let JM be the
modular conjugation operator. Then identify A with L∞(X, µ), where the measure µ arises
from the trace on M . The algebra B = JMAJM commutes with A and so A and B together
generate an abelian von Neumann algebra C = (A∪B)′′ on H. We may write C = L∞(R, ν)
for some measure space (R, ν). The inclusions A →֒ C and B →֒ C induce two Borel maps
πl, πr : R → X and these can be used to view R as a Borel subset of X ×X , using πl and πr
as the projections. Propositions 3.2-3.9 of [38] then show that this procedure does produce a
countable standard relation R which we call the equivalence relation of the inclusion A ⊆M
(and the counting measure induced on this relation is in the same measure class as the
initially chosen ν).
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Proposition 6.4.1. Let M and N be II1 factors acting nondegenerately on H with M ⊂γ

N ⊂γ M for some γ < 5.7× 10−16. Suppose that A ⊆M is a Cartan masa in M . Then any
von Neumann subalgebra B ⊆ N with A ⊂δ B ⊂δ A for δ < 1/101 is a Cartan masa and
the II1 measurable equivalence relations determined by the inclusions A ⊆ M and B ⊂ N
are equivalent.

Proof. By [21, Corollary 4.4], there is a unitary u ∈ (A ∪ B)′′ with uAu∗ ⊆ B, ‖u − IH‖ ≤
150γ and ‖uxu∗ − x‖ ≤ 100γ‖x‖ for x ∈ A. Set N1 = u∗Nu so that A ⊂ M ∩ N1 and
M ⊂γ1 N1 ⊂γ1 M , where γ1 = 301γ. Lemma 4.2.3 applies to M and N1 with P = A, so
that M and N1 can be simultaneously represented in standard position on the same Hilbert
space K so that JMAJM = JN1

AJN1
. Now when we construct the equivalence relations

from (A∪ JMAJM)′′ and (A∪ JNAJN)′′ as described immediately before the lemma, we get
precisely the same orbit equivalence relation for the inclusions A ⊆ M and A ⊆ N1. Since
the inclusion A ⊆ N1 is unitarily equivalent to B ⊆ N , it follows that B ⊆ N and A ⊆ M
induce isomorphic equivalence relations. �

We now turn to the 2-cohomology class induced by the inclusion A ⊆ M of a Cartan masa
in a II1 factor. Let R be a countable measured equivalence relation on (X, µ) equipped with
the measure class of the counting measure (see [37, Theorem 2]). The cohomology group we
need is H2(R,T). These groups were introduced in [37, Section 6] and we briefly review how
they are defined. For n ≥ 1, let Rn = {(x0, . . . , xn) ∈ Xn+1 : (xi−1, xi) ∈ R, i = 1, . . . , n}.
This is a Borel subset of Xn+1 and is equipped with a measure class generalizing the counting
measure class on R to Rn (see [37, Proposition 2.3]). We then define the abelian group of
n-cochains, Cn(R,T) to be equivalence classes of Borel functions Rn → T with pointwise
multiplication. The coboundary map ∂n : Cn → Cn+1 is given by

(6.32) (∂f)(x0, . . . , xn+1) =
n+1∏

i=0

f(x0, . . . , xi−1, x̂i, xi+1, . . . , xn+1)
(−1)i ,

where (x0, . . . , xi−1, x̂i, xi+1, . . . , xn+1) denotes the n + 1-tuple in Rn obtained by omitting
xi. Since ∂n∂n−1 = 0, it makes sense to define the cocycles by Zn(R,T) = ker ∂n, the
coboundaries by Bn(R,T) = Im ∂n−1 and the n-th cohomology group by Hn(R,T) =
Zn(R,T)/Bn(R,T).

The automorphism group Aut(R) of the relation R consists of the (equivalence classes of)
Borel isomorphisms θ : X → X for which (θ × θ)(R) = R. We have an action of Aut(R) on
the cochains Cn(R,T) given by

(6.33) (θf)(x0, . . . , xn) = f(θ−1(x0), . . . , θ
−1(xn)), (x0, . . . , xn) ∈ Rn,

which induces an action on the cohomology groups Hn(R,T). The main result of [38] is
that an inclusion of a Cartan masa in a von Neumann algebra is completely classified by
the induced equivalence relation R and the orbit under Aut(R) in H2(R,T) of a cohomology
class constructed from the original inclusion. To give a version of Lemma 6.1.1 in this setting
we need to review how this construction works in detail.

Feldman and Moore observe that when A is Cartan, L∞(R, ν) = (A∪JMAJM)′′ is maximal
abelian in B(H) (see [38, Proposition 3.11] and also [81]). This enables them to view H as
L2(R, ν) and gives rise to a decomposition of normalizers in [38, Proposition 3.10] as follows.
Given any normalizer u ∈ N(A ⊆ M) which induces the corresponding action θu on X
(meaning that (ufu)∗(x) = f(θ−1

u (x)) for f ∈ L∞(X) and x ∈ X), there is a measurable
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map au : R → T such that, viewing u as an element of B(L2(R, ν)), we have

(6.34) (uψ)(x, y) = au(x, y)ψ(θ
−1
u (x), y), ψ ∈ L2(R, ν), (x, y) ∈ R.

This is proved by defining another unitary u′ on L2(R, ν) by (u′ψ)(x, y) = ψ(θ−1
u (x), y) and

noting that both u and u′ normalize C = (A ∪ JMAJM)′′ and ucu∗ = u′cu′∗ for all c ∈ C.
Since C = (A∪JMAJM)′′ = L∞(R, ν) is maximal abelian in B(L2(R, ν)) it follows that uu′∗

is a unitary, say au, in L
∞(R, ν) and the claim follows.

Let G be a dense subgroup of N(A ⊆M) which contains U(A) and for which the quotient
group G0 = G/U(A) is countable. Two normalizers u1, u2 in the same U(A)-coset induce the
same action so that θu1

= θu2
, and consequently G0 acts on X , inducing an orbit equivalence

relation RG0
. In [38, Proposition 3.9] it is shown that the equivalence class of this relation

does not depend on the choice of G and that it is equivalent to the original orbit equivalence
relation R.

Fix such a group G and let D consist of one representative in G of each coset of G0 =
G/U(A). We may assume that 1 ∈ D and if u ∈ D, then u∗ ∈ D. If (x, y) ∈ RG0

, then we
can find at least one element u of D with θu(x) = y; since the action is not necessarily free
this u need not be unique. To resolve this, Feldman and Moore partition R into a disjoint
union of Borel sets (R(u))u∈D so that R(1) is the diagonal, and R(u∗) is obtained by flipping
R(u). They then define a Borel function c : R2 → T by

(6.35) c(x, y, z) = au(x, y), where (x, z) ∈ R(u),

([38, Proposition 3.13] shows that this is well defined). Implicit here is the fact that while
R and RG0

are equivalent, they are not equal: thus one deletes a null set where no such u
can be found. Finally, they obtain a cocycle t on R2 by showing that the quantity

(6.36) t(x, y, z) = c(x, y, r)c(y, z, r)c(x, z, r)−1, (x, y, z) ∈ R2

is independent of the variable r and defines a 2-cocycle. Further, while t itself depends on
the choice of D above, its class in H2(R,T) does not. This class only depends on A ⊆ M
and the identification of A with L∞(X) (this last point explains why Feldman and Moore’s
invariant is the orbit of the class of t under Aut(R)). We are now in a position to establish
the II1 measured equivalence relation version of Lemma 6.1.1. We state the result in the
context of a common Cartan masa A ⊆ M and A ⊆ N ; the standard reduction procedure
of first twisting N so that it also contains A can be used in the general case.

Proposition 6.4.2. LetM and N be II1 factors acting nondegenerately on H with d(M,N) <
γ < 1.74 × 10−13. Suppose that A ⊆ M ∩ N is a Cartan masa in both M and N . Then
the inclusions A ⊆ M and A ⊆ N determine isomorphic measurable equivalence relations.
Denote the class of these relations as R. Then we can choose representatives ωM and ωN in
Z2(R,T) of the (orbits of the) Feldman-Moore cohomology classes corresponding to A ⊆ M
and A ⊆ N such that

(6.37) ‖ωM − ωN‖L∞(R2) ≤ 3242311γ1/2.

Proof. Write A = L∞(X, µ), where µ is the measure on X obtained from restricting τM to
A. The bound on γ is chosen so that Lemma 4.2.3 applies. Thus we can replace H by the
K of that lemma and assume that M and N are simultaneously in standard position with
the same fixed tracial vector on K so that JMAJM = JNAJN , at the expense of changing
the distance estimate to M ⊂β N ⊂β M , where β = 50948γ1/2. In this way we obtain a
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common algebra (A ∪ JMAJM)′′ = (A ∪ JNAJN)′′ which we identify as L∞(R, ν), for some
measurable II1 equivalence relation R on X . Further, we identify K with L2(R, ν).

Theorem 3.2.3 gives us a well defined group isomorphism Θ : N(A ⊆M)/U(A) → N(A ⊆
N)/U(A) obtained by Θ(uU(A)) = vU(A), where v ∈ N(A ⊆ N) satisfies ‖v− u‖ < 15

√
2β.

Choose a dense subgroup G̃ of N(A ⊂ M) which contains U(A) so that G̃0 = G̃/U(A)

is countable. Define H̃ = Θ(G̃0) and let H be any dense subgroup of N(A ⊆ N) with
U(A) ⊆ H so that H0 = H/U(A) is countable and contains H̃ . Let D be a set consisting
of one representative in H of each coset in H0 so that 1 ∈ D and D is closed under the
adjoint operation. For each v ∈ D, choose a unitary normalizer uv ∈ N(A ⊆ M) with
‖uv − v‖ < 15

√
2β by Lemma 3.2.1 (ii), the bound on γ being small enough to ensure that

2
√
2β < 1/8 so that this lemma applies. We insist that these choices are made such that

u1 = 1 and (uv)
∗ = uv∗ for each v ∈ D. Now let G be the subgroup of N(A ⊆M) generated

by U(A) and {uv : v ∈ D}. Note that Θ−1(H0) ⊇ Θ−1(H̃) = G̃0 so that G contains G̃
and hence is dense in N(A ⊆ M). Since D is countable, G0 = G/U(A) is countable. By
construction, the set E = {uv : v ∈ D} consists of exactly one representative in G of each
coset of G0.

Each uv ∈ E, arises from a measurable function auv
: R → T from (6.34), so that

(6.38) (uvψ)(x, y) = auv
(x, y)ψ(θ−1

uv
(x), y), ψ ∈ L2(R, ν), (x, y) ∈ R,

where θuv
is the action induced on X via the normalizer uv of L∞(X) = A. Similarly for

v ∈ D, we obtain a measurable function bv : R → T such that

(6.39) (vψ)(x, y) = bv(x, y)ψ(θ
−1
v (x), y), ψ ∈ L2(R, ν), (x, y) ∈ R.

As uv and v induce the same action on A, it follows that θuv
= θv and hence

(6.40) ‖auv
− bu‖L∞(R) = ‖uv − v‖B(L2(R,ν)) ≤ 15

√
2β.

Now choose a Borel partition (R(v))v∈D of R so that R(1) is the diagonal and R(v∗) is the
flip of R(v) for all v ∈ D. We can view this as a partition indexed by E as well. Thus when
we define c : R2 → T for A ⊆M by c(x, y, z) = auv

(x, y) when (x, z) ∈ R(uv) and d : R
2 → T

for A ⊆ N by d(x, y, z) = bv(x, y) when (x, z) ∈ R(v), it follows that ‖c−d‖L∞(R2) ≤ 15
√
2β.

Now define a representative ωM of the Feldman-Moore cococycle by (6.36) for A ⊆ M and
a representative ωN for the cocycle of A ⊆ N by the analogous formula using d in place of
c. It follows that

(6.41) ‖ωM − ωN‖L∞(R2) ≤ 3‖c− d‖L∞(R2) ≤ 45
√
2β < 3242311γ1/2,

as claimed. �

In just the same way as Corollary 6.1.2 is deduced from Theorem 6.1.1, it follows that a
II1 factor M arising from the Feldman-Moore construction from the equivalence relation R
is weakly Kadison-Kastler stable when the natural comparison map

H2
b (R,R) → H2(R,R)

vanishes.
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6.5. Concluding remarks. In general terms, we have fixed a von Neumann algebra M in
a certain class and asked whether it is isomorphic to all of its close neighbors N . We end by
setting out what our methods give when restrictions are imposed on both M and N . In the
next result, we use the fact that N is assumed to already be presented as a genuine crossed
product to avoid using cohomological hypotheses to untwist the cocycle in Theorem 6.1.1.

Corollary 6.5.1. Let α : Γ y (X, µ) and β : Λ y (Y, ν) be free, ergodic, probability
measure preserving actions of countable discrete groups Γ and Λ. Let M = L∞(X, µ)⋊α Γ,
N = L∞(Y, ν) ⋊β Λ and suppose that M contains a unique Cartan masa up to unitary
conjugacy. Suppose that M and N are represented as von Neumann algebras on H with
d(M,N) < 5.8× 10−16. Then M is isomorphic to N .

Proof. Theorem 6.1.1 shows that we can identifyN as a twisted crossed product L∞(X, µ)⋊α,ω

Γ for some 2-cocycle ω ∈ Z2(Γ,U(L∞(X, µ))). Since M contains a unique Cartan masa, so
too does N by Theorem 4.2.5 (iv). By the uniqueness of the Cartan masa in N , the orbit
equivalence relations induced by α and β must be isomorphic. Since the isomorphism class
of a crossed product depends only on the orbit equivalence relation of the underlying action,
it follows that N ∼= M . �

By [88, Theorem 1.1], the factor M is guaranteed to have a unique Cartan masa in the
following circumstances: Γ is a nonelementary hyperbolic group; a lattice in a connected
noncompact rank one simple Lie group with finite center; a limit group or a finite product
of these groups. We do not know how to extend the class of weakly Kadison-Kastler factors
to reach all crossed products containing a unique Cartan masa. In particular our strategy
of relying on the vanishing of the comparison map

H2
b (Γ, L

2(Z(P )sa)) → H2(Γ, L2(Z(P )sa))

cannot work in this level of generality: when Γ is a hyperbolic group the comparison map
H2

b (Γ,R) → H2(Γ,R) is always surjective [59].
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