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1. Introduction

Von Neumann algebras arose in the work of Murray and von Neumann [14] as the symme-
tries of a quantum physical system. The state space of an isolated physical system can be
modeled by a complex Hilbert space H and an observable of the state space by a bounded
linear self-adjoint operator on H. In theory, all that can be measured about the system is
captured by the observable.

A von Neumann algebra is a subalgebra of the bounded linear operators on H (B(H))
that is unital (contains the identity operator on H), closed under taking adjoints, and closed
in strong operator topology (SOT). Von Neumann [25] established the fundamental double
commutant theorem, one version of which states that a unital adjoint-closed subalgebra A
of B(H) is a von Neumann algebra if and only if A = A′′ = (A′)′, where A′ denotes the set
of all x in B(H) that commute with A. This ensures that if S is any adjoint-closed set in
B(H), then S ′ = S ′′′. Taking S = T = T ∗ gave von Neumann the connection between von
Neumann algebras and quantum physics.

Murray and von Neumann realized that any von Neumann algebra could be built as a
direct integral (a generalization of direct sums) out of factors, von Neumann algebras with
only scalar multiples of the identity operator in their center. Many structural problems
about von Neumann algebras then reduce to the factor case. Factors come in types I, II,
and III.

My own area of interest is in type II factors, which are divided into types II1 and II∞.
One can think of a II1 factor M as an infinite dimensional analog of the n× n matrices, as
they come equipped with a finite tracial state τ with the property that τ(x∗x) = 0 implies
x = 0 for all x in M . We can use τ to define an inner product 〈x, y〉τ = τ(xy∗) for x, y ∈ M .
Completing M with respect to 〈·, ·〉τ yields a Hilbert space denoted by L2(M), and M is
faithfully represented on L2(M) via left multiplication.

A von Neumann subalgebra N of a factor M which is itself a factor will be referred to as
a subfactor. Vaughan Jones defined an index theory for subfactors of type II1 factors, from
which he deduced an invariant for knots, the Jones polynomial [11]. If N ⊆ M ⊆ B(L2(M)),
the index [M : N ] of N in M is the dimension of L2(M) as a left Hilbert N -module. If M is
a II1 factor and G is a contable discrete group with a proper, outer action θ on M , then if
H is a subgroup of G, [M oθ G : M oθ H] = [G : H]. Hence the index in this case is always
a positive integer, but the theory for general II1 factors is far richer. It is Jones’ remarkable
rigidity result [11] that the index takes values only in the set {4 cos2(π

n
) : n ≥ 3} ∪ [4,∞],

and that all such values are realized for subfactors of the hyperfinite II1 factor.
The first application from the examination of finite index subfactors was Jones’ discovery

of the polynomial that now bears his name [11], which is a knot invariant. Also, the study of
finite index subfactors has provided new solutions to the Yang-Baxter equations in statistical
mechanics and new integrable lattice models [3], [13], building on constructions by Bisch and
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Jones [1]. Finite index subfactors can also be used to generate topological quantum field
theories [12], [6], [15].

If M is a II1 factor and A is a masa, let NM(A) be the group of normalizing unitaries of
A in M , i.e. the set of all unitaries u ∈ M such that uAu∗ = A. The masa A is said to be

(1) Singular if (NM(A))′′ = A;
(2) Semi-regular if (NM(A))′′ is a subfactor of M ;
(3) Regular if (NM(A))′′ = M .

The notions of singularity, regularity, and semi-regularity for a masa A of a given factor M
were first introduced by Dixmier [4], who showed that all three types of masas exist in the
hyperfinite II1 factor. These definitions can be extended to arbitrary subalgebras of M .

Recently, Popa and Ozawa [16] have obtained a new proof of Voiculescu’s amazing theorem
that L(Fn) has no regular masa [24] using intertwining techniques with partial isometries. In
particular, they show that the normalizing algebra NL(Fn)(B)′′ of any diffuse, abelian suba-
glebra B of L(Fn) is hyperfinite. As L(Fn) itself is not hyperfinite, this implies Voiculescu’s
result, which reveals that not every II1 factor can be obtained via the crossed product con-
struction with a commutative von Neumann algebra. Hence, the study of normalizers of
subalgebras gives powerful structural insight into the containing algebra.

2. Results

2.1. Normalizers and Tensor Products. As a consequence of Popa’s intertwining lemma
[18], I showed in work with Sinclair, Smith, and White [22] that all singular masas in M
have the weak asymptotic homomorphism property (WAHP) in M . In order to define this
property, let ξ denote the identity of M , considered as an element of L2(M). Then for a
subalgebra B of M , we denote by L2(B) the 2-norm closure of Bξ in L2(M) and eB the
orthogonal projection onto L2(B). The unique normal, faithful, τ -preserving conditional
expectation EB from M to B is defined by EB (x) ξ = eB(xξ). Following [20], B has the
WAHP in M if

Definition 2.1. ∀ε > 0, ∀x1, . . . , xn, y1, . . . , ym ∈ M , ∃ unitary u ∈ B with

‖EB (xiuyj)− EB (xi) uEB (yj) ‖2 < ε,

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Since (WAHP)⇒(singular) is trivial, we immediately obtain

Theorem 2.2. A masa A in a II1 factor M is singular if and only if it has the WAHP.

Given subalgebras Bi of II1 factors Mi, i = 1, 2, it is easy to check that if B1 and B2

have the WAHP in M1 and M2, respectively, then B1⊗B2 has the WAHP in M1⊗M2, where
⊗ denotes the von Neumann algebra tensor product. The following corollary is then an
immediate consequence of Theorem 2.2:

Corollary 2.3. If M1 and M2 are II1 factors and A1 and A2 are singular masas in M1 and
M2, respectively, then A1⊗A2 is a singular masa in M1⊗M2.

Chifan [2] extended Corollary 2.3 to all masas in II1 factors, proving that

NM1(A1)
′′⊗NM2(A2)

′′ = NM1⊗M2
(A1⊗A2)

′′.
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For general unital subalgebras of II1 factors, this result need not hold. To recapture results
for tensor products, it is necessary to expand the class of normalizing operators to include
partial isometries. Define the one-sided groupoid normalizers of B in M as

OGM(B) = {v ∈ M : v∗v, vv∗ ∈ P(B) and vBv∗ ⊆ Bvv∗}.

Call v a groupoid normalizer (denoted by GM(B)) if also v∗Bv ⊆ B. If B is a masa or a finite
index subfactor, then every v ∈ GM(B) will be of the form v = up (this the content of Dye’s
Theorem [5]) for u ∈ NM(B) and p ∈ P(B). Hence, we will obtain that NM(B)′′ = GM(B)′′

in these cases. For infinite index subfactors, it is still true that v = up except now we can
only expect u ∈ ONM(B), and so

OGM(B)′′ = ONM(B)′′.

The following is the main result from [7]

Theorem 2.4. Let B1, B2 be unital von Neumann subalgebras of M1 and M2 such that
B′

i ∩Mi ⊆ Bi, i=1,2. Then

OGM1(B1)
′′⊗OGM2(B2)

′′ = OGM1⊗M2
(B1⊗B2)

′′

and

GM1(B1)
′′⊗GM2(B2)

′′ = GM1⊗M2
(B1⊗B2)

′′.

This implies that the equality between the algebras generated by unitary normalizers holds
for all von Neumann subalgebras of a II1 factor satisfying Dye’s theorem. We also obtained
an explicit decomposition result for groupoid normalizers of a tensor product:

Corollary 2.5. Let B1, B2 be as in Theorem 2.4. Suppose that v ∈ GB1⊗B2
(M1⊗M2) and

let ε > 0. Then there are x1, . . . , xn ∈ B1⊗B2, w1,1, . . . , w1,n ∈ GM1(B1) and w2,1, . . . , w2,n ∈
GM2(B2) such that

(1) ‖xj‖ ≤ 1 for all 1 ≤ j ≤ n.

(2)
∥∥∥v −

∑n
j=1 xj(w1,j ⊗ w2,j)

∥∥∥
2

< ε.

2.2. Strong Singularity. Sinclair and Smith [21] introduced a metric condition for masas,
α-strong singularity for α > 0, as the existence of a number α with the property

(2.1) α‖u− EA(u)‖2 ≤ sup
x∈M,‖x‖≤1

‖EA(x)− EuAu∗(x)‖2

for all unitaries u ∈ M . If A is 1-strongly singular, we say that A is simply strongly singular.
There is no difficulty in extending the definition to arbitrary subalgebras B of M , and in
particular to subfactors N of M .

It was noted earlier that (WAHP)⇒(singularity), but actually (WAHP)
⇒(strong singularity)⇒(singularity). By considering a Pimsner-Popa basis, in joint work
with Grossman [8], we could show directly that

Proposition 2.6. No proper finite index subfactor of a II1 factor M can have the WAHP.

Therefore, other techniques must be used when passing from singularity to α-strong sin-
gularity. Calculations can be simplified if the dimension of the higher relative commutant
N ′ ∩ 〈M, eN〉 is small. In [8], we obtained the following
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Theorem 2.7. Suppose N ⊆ M is an inclusion of II1 factors with N singular in M and
N ′ ∩ 〈M, eN〉 two-dimensional. Then for all unitaries u ∈ M ,√

[M : N ]− 2

[M : N ]− 1
‖u− EN(u)‖2 ≤ sup

x∈M,‖x‖≤1

‖EN(x)− EuNu∗(x)‖2

if [M : N ] < ∞, so that N is
√

[M :N ]−2
[M :N ]−1

-strongly singular in M . If [M : N ] = ∞, then N is

strongly singular in M .

The property N ′ ∩ 〈M, eN〉 ∼= C ⊕ C is referred to as 2-supertransitivity (or merely 2-
transitivity) and is satisfied by all subfactors of noninteger index less than 4. For larger
index values, we can take M to be the crossed product of a II1 factor P by an outer action of
G = Sn, and N the crossed product of P by H ∼= Sn−1 a subgroup that fixes single element.
One can also take G = S∞, the group of all permutations on N which fix all but finitely
may elements, and H to be any subgroup fixing a single element as an example with infinite
index.

Without assumptions on the higher relative commutants, we could show via a result of
Popa, Sinclair, and Smith [19] that

Theorem 2.8. Every singular subfactor M of a II1 factor is α-strongly singular with α =
1

13
.

The existence of a global constant perhaps suggests the possibility of improvement. In
fact, this is not the case. While the situation remains ambiguous for infinite index subfactors,
in the finite index setting, Grossman and I showed in [8] that the ultimate improvement is
impossible:

Theorem 2.9. There exists a finite index singular subfactor N of the hyperfinite II1 factor

R such that N is no more than
√

2(
√

2− 1) strongly singular in R.

The hyperfinite II1 factor may be obtained from the crossed product by L∞ with an
amenable group, and is the unique (up to isomorphism) II1 factor that is the strong closure
of finite dimensional algebras, from whence the term “hyperfinite” arises. The example is
a GHJ subfactor obtained from D5 at the trivalent vertex. Planar algebra techniques are
used to compute that the expectation of the unitary in question is zero, while the angles
between the subfactor and its unitary conjugate bound the norm difference of the conditional
expectation below 1. While lacking the tidiness of the masa case, the possibilities for finite
index subfactors yield a much more interesting theory. The supremum of all numbers α
appearing in equation (2.1) is a new, nontrivial numerical invariant for singular subfactors
under inner conjugacy.

3. Further Directions of Research

I am interested in pursuing the computation of strong singularity constants, in particular:

Question 3.1. What are the possible strong singularity constants for GHJ subfactors or for
N = P o Sn−1 ⊆ P o Sn = M?

The GHJ construction provides a pair of singular subfactors with the same index. The
difficulty lies in showing there is a unitary in the ambient factor that conjugates one to the
other. Although it is easier to find natural unitaries to test in the group-subgroup case, all
calculations up to this point have yielded α = 1. I would also like to know,
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Question 3.2. Does there exist an analog of Theorem 2.7 for N ′ ∩ M1 merely finite-
dimensional?

I think the best that can be hoped for is a constant that tends to one as the index goes to
infinity. From discussions with Ionut Chifan, I suspect a bound dependent upon the trace

of a nonzero minimal projection p subordinate to e⊥N in N ′ ∩M1 of the form α ≥
√

1− 1
Tr(p)

to be possible by employing averaging techniques, but this does not have any nice limiting
properties. Since every known example of a strongly singular subfactor has the WAHP, we
can ask,

Question 3.3. Does α = 1 characterize the WAHP?

A potential candidate for study is the subfactor inclusion described at the end of [23]. We
have M = L(G) ⊃ L(H) = N where G = F∞o (ZoZ2) and H is the subgroup generated by
the copies of F∞ and Z2. Then [M : N ] = [G : H] = ∞ and the minimal trace of a nonzero
subprojection of e⊥N is two. Therefore N is singular in M but does not have the WAHP as
a consequence of Popa’s intertwining lemma.

Aside from the computation of strong singularity constants, a problem I have thought a
little about is,

Question 3.4. Is there a masa in every separable II1 factor with Pukanszky invariant equal
to {∞}?

It seems it might be possible to adapt Popa’s construction of a singular masa in any
separable II1 factor [17] to produce such a masa.

Leaving the type II realm, there has been progress in understanding the structure of
preduals type III hyperfinite factors. These factors are divided into subtypes IIIλ where
0 ≤ λ ≤ 1. An open question is

Question 3.5. What are the complete or Banach isomorphism classes for hyperfinite type
III0 factor preduals?

By results of Haagerup, Sukochev, and Rosenthal [10], there is a single complete isomor-
phism class for type IIIλ factor preduals when λ > 0. It is a recent result of Haagerup
and Musat [9] that there are uncountably many complete isomorphism classes for type III0
preduals. The Banach isomorphism question appears to be quite difficult.
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