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A REMARK ON THE SIMILARITY AND PERTURBATION PROBLEMS

JAN CAMERON, ERIK CHRISTENSEN, ALLAN M. SINCLAIR, ROGER R. SMITH,
STUART WHITE, AND ALAN D. WIGGINS

Abstract. In this note we show that Kadison’s similarity problem for C∗-algebras is equiv-
alent to a problem in perturbation theory: must close C∗-algebras have close commutants?

Let A be a C∗-algebra. In 1955 Kadison asked whether every bounded homomorphism
σ : A → B(H) is similar to a ∗-homomorphism [12], i.e. does there exist an invertible
operator S ∈ B(H) such that S−1σ(·)S is a ∗-homomorphism? This problem, which remains
open, has positive answers in the following cases: for amenable algebras [2], for properly
infinite von Neumann algebras and traceless C∗-algebras [10], in the presence of a cyclic
vector [10], and for II1 factors with property Γ [8]. It is equivalent to a number of important
problems and properties:

• is every bounded homomorphism σ : A → B(H) completely bounded? ([10])
• the derivation problem [15] - given a faithful non-degenerate representation ι : A →
B(H), is every derivation of ι(A) into B(H) spatial?

• the distance property [5, 7, 15] - does there exist a constant K > 0 such that given
any faithful non-degenerate representation ι : A → B(H)

(1)
1

2
‖ad(T )|ι(A)‖cb = d(T, ι(A)′) ≤ K‖ad(T )|ι(A)‖

holds for all T ∈ B(H)?1 When this holds, A is said to have property DK . Here, and
throughout the paper, ad(T ) denotes the spatial derivation X 7→ [T,X ] = TX−XT
on B(H).

• do all C∗-algebras have finite length?2 ([17])
• are all von Neumann algebras hyperreflexive? (see [18, Theorem 10.3]).
• Diximer’s invariant operator range problem from 1950 (see [18, Problem 10.4]).

In this note we add to the list of equivalent formulations by showing that the similarity
problem is equivalent to an open question in the uniform perturbation theory of operator
algebras.

The Kadison-Kastler metric on all C∗-subalgebras of B(H) is given by restricting the
Hausdorff metric on subsets of B(H) to the unit balls. Specifically, for pairs of C∗-algebras
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1The equality in (1) is Arveson’s distance formula from [1] and is always valid.
2Pisier’s characterisation of the similarity problem using his notion of length provides an intrinsic formu-

lation of the similarity property in terms of internal behaviour.
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A,B ⊆ B(H),

d(A,B) = max





sup
x∈A
‖x‖≤1

inf
y∈B
‖y‖≤1

‖x− y‖, sup
y∈B
‖y‖≤1

inf
x∈A
‖y‖≤1

‖y − x‖





.

This notion was introduced in [13] which conjectures that sufficiently close von Neumann
algebras must arise from a small unitary perturbation. Precisely, for all ε > 0, there should
exist δ > 0 such that, given von Neumann algebras M,N ⊆ B(H) with d(M,N) < δ, there
exists a unitary U on H with ‖U − IH‖ < ε satisfying UMU∗ = N.3 This conjecture, if true,
immediately implies that the operation of taking commutants of C∗-algebras is continuous
with respect to the Kadison-Kastler metric.4 Establishing that certain close operator algebras
have close commutants, and a related property of near inclusions (see Remark 2 below) play
a key role in our recent work on the Kadison-Kastler problem for crossed product factors [3],
in EC’s solution to the near inclusion problem for injective von Neumann algebras [6] and in
work on transferring K-theoretic invariants between close algebras [14, 9, 16] (see Remark 3
below). Here we show that the continuity of the operation of taking commutants is equivalent
to the similarity problem. In order to phrase this result for individual C∗-algebras we make
the following definition.

Definition. Let A be a C∗-algebra. Say that commutants are continuous at A if, for ε > 0,
there exists δ > 0 such that given a faithful non-degenerate ∗-representation ι : A → B(H)
and a C∗-algebra B ⊆ B(H) with d(ι(A),B) < δ, we have d(ι(A)′,B′) < ε.

Theorem. The following statements are equivalent for a C∗-algebra A:

(I) A satisfies Kadison’s similarity property;
(II) commutants are continuous at A.

Further, the similarity problem has a positive answer for all C∗-algebras if and only if the
operation of taking commutants on B(H) is continuous in the case when H is an infinite
dimensional separable Hilbert space.

Proof of the Theorem

If the similarity problem has a positive answer for all C∗-algebras, then there exists a
constant K > 0 such that all C∗-algebras have property DK (by [15] and [7]). It is then easy
to see that

(2) d(A′,B′) ≤ 4Kd(A,B)

for all C∗-algebras A,B ⊂ B(H) (this dates back to [6], and can be found explicitly by
combining Proposition 2.3 (iii) and Proposition 2.5 of [9]). The local version (I) =⇒ (II)
of this implication is much more involved as we do not have the information that B also
has property DK required in the previous argument. Nevertheless, this implication was
established in [9, Theorem 4.2] as a step towards showing that ifA has the similarity property,
then any C∗-algebra sufficiently close to A also has the similarity property.

3Due to the results of [4, 11], the analogous conjecture for C∗-algebras is that sufficiently close separable
C∗-algebras acting on a separable Hilbert space should be spatially isomorphic; one cannot demand control
on the distance from an implementing unitary to the identity in this context.

4Via a Kaplansky density argument, it suffices to consider the continuity of taking commutants on the
set of von Neumann subalgebras of B(H).
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We now turn to the reverse implication (II) =⇒ (I). For X,R ∈ B(H), we use the identity
RmX − XRm = Rm−1(RX − XR) + (Rm−1X − XRm−1)R to establish by induction the
estimates

(3) ‖[Rm, X ]‖ ≤ m‖R‖m−1‖[R,X ]‖, m ∈ N.

Suppose that commutants are continuous at A, but that there exists no constant K > 0
such that A has property DK . Then we may find a sequence (ιn)n of faithful, non-degenerate
representations ι : A → B(Hn) and operators Tn ∈ B(Hn) with

d(Tn, ιn(A)′) > n‖ad(Tn)|ιn(A)′‖, n ≥ 1.

For each n, choose S̃n ∈ ιn(A)′ satisfying ‖S̃n − Tn‖ = d(Tn, ιn(A)
′). Write Sn = Tn − S̃n so

that

(4) ‖Sn‖ > n‖ad(Sn)|ιn(A)′‖, n ≥ 1.

Scaling in this inequality allows us to assume that ‖Sn‖ = 1 while retaining the valid-
ity of (4). Since d(Sn, ιn(A)′) = 1, either d(ℜ(Sn), ιn(A)′) ≥ 1/2 or d(ℑ(Sn), ιn(A)′) ≥
1/2 for each n, while the equation ‖ad(Sn)|ιn(A)‖ = ‖ad(S∗

n)|ιn(A)‖ gives the limiting be-
haviour ‖ad(ℜ(Sn))|ιn(A)‖, ‖ad(ℑ(Sn))|ιn(A)‖ → 0 as n → ∞. Thus we obtain a sequence
of self-adjoint contractions Rn ∈ B(Hn) such that d(Rn, ιn(A)′) ≥ 1/2 for n ≥ 1 and
limn→∞ ‖ad(Rn)|ιn(A)‖ = 0. By approximating f(t) =

√
1− t2 uniformly by polynomials

on [−1, 1] and using the estimate (3), we see that the unitary operators

U±
n = Rn ± i

√
1− R2

n

satisfy limn→∞ ‖ad(U±
n )|ιn(A)‖ = 0. Since Rn = (U+

n +U−
n )/2 for each n, either d(U+

n , ιn(A)′) ≥
1/2 or d(U−

n , ιn(A)′) ≥ 1/2. Appropriate choices of signs give unitaries Un ∈ B(Hn) with

(5) d(Un, ιn(A)′) ≥ 1/2, n ≥ 1,

while limn→∞ ‖ad(Un)|ιn(A)‖ = 0.
Now consider the faithful non-degenerate representations ιn ⊕ ιn : A → M2(B(Hn)) so

that

(ιn ⊕ ιn)(A) =

{(
ιn(a) 0
0 ιn(a)

)
: a ∈ A

}
.

Define C∗-algebras Bn by

Bn =

{(
ιn(a) 0
0 Unιn(a)U

∗
n

)
: a ∈ A

}
⊆ M2(B(Hn)), n ≥ 1,

so that d((ιn ⊕ ιn)(A),Bn) ≤ ‖ad(Un)|ιn(A)‖ → 0. Clearly Wn =

(
0 IHn

0 0

)
∈ (ιn ⊕ ιn)(A)′

so, by hypothesis, d(Wn,B
′
n) → 0. Choose W̃n ∈ B′

n with ‖Wn − W̃n‖ = d(Wn,B
′
n) and let

Xn be the (1, 2)-entry of W̃n. Then ‖Xn − IHn
‖ → 0 and

ιn(a)Xn = XnUnιn(a)U
∗
n, a ∈ A.

Thus XnUn ∈ ιn(A)′ so that d(Un, ιn(A)′) → 0, contradicting (5). This completes the proof
of (II) =⇒ (I).

Finally, note that Kadison’s similarity problem is a equivalent to the existence of a constant
K > 0 such that

1

2
‖ad(T )|A‖cb ≤ K‖ad(T )|A‖, T ∈ B(H),



4 CAMERON, CHRISTENSEN, SINCLAIR, SMITH, WHITE, AND WIGGINS

whenever H is a separable Hilbert space and A ⊆ B(H) is a C∗-algebra. This is established
by a standard argument (cf the last two paragraphs of the proof of [3, Proposition 2.1.5])
which shows that this last condition implies the same condition without the separability
assumption. Consequently, the proof of (II) =⇒ (I) shows that if the operation of taking
commutants is continuous on B(H) for H separable and infinite dimensional, then Kadison’s
similarity property holds.

Remarks

1. If the operation of taking commutants is globally continuous, then there is a universal
constant K > 0 such that all C∗-algebras have property DK and hence (2) holds. In partic-
ular taking commutants is Lipschitz. In the local situation, the proof of (I) =⇒ (II) given in
[9, Theorem 4.2] shows that if A ⊆ B(H) is a C∗-algebra which has finite similarity length
ℓ and length constant K, then there exists a constant C ′

ℓ,K such that

d(A′,B′) ≤ C ′
ℓ,Kd(A,B)

for all C∗-algebras B on H with d(A,B) sufficiently small. Since the metric d has diameter
1, it follows that there is a constant Cℓ,K such that

d(A′,B′) ≤ Cℓ,Kd(A,B)

for all C∗-algebras B on H. This says that if A has the similarity property, then taking
commutants is locally a Lipschitz operation near A.

2. The similarity property is also characterised by the property that near inclusions of
algebras give rise to near inclusions of their commutants. For C∗-algebras A,B ⊆ B(H)
and γ ≥ 0, write A ⊆γ B if, given x ∈ A, there exists y ∈ B with ‖x − y‖ ≤ γ‖x‖. It is
natural to ask whether, given ε > 0, there exists δ > 0 such that the near inclusion A ⊆δ B

implies that B′ ⊆ε A
′.5 Indeed the connection between the similarity problem and questions

of close commutants originates in [6] where a positive answer is given when A has property
DK . This question is also equivalent to the similarity property, and the local version at A is
equivalent to the similarity property for A. The global statement follows immediately, as the
ability to take commutants of all near inclusions in this way implies that taking commutants
is continuous. For the local statement, note that the proof of the theorem only uses the
continuity of commutants for pairs (A, UAU∗), and this follows from being able to take
commutants of near inclusions of A.

3. It is natural to consider a completely bounded version of the Kadison-Kastler metric:
dcb(A,B) = supn d(A ⊗ Mn, B ⊗Mn).

6 When dcb(A,B) is sufficiently small, one can show
that A and B have the same K-theoretic invariants used in the classification programme,
[14, 9]. Moreover in this case A and B also have isomorphic Cuntz semigroups [16]. Thus it is
of interest to learn when d(·, ·) and dcb(·, ·) are equivalent metrics: this too is a reformulation
of the similarity problem.7 That the similarity problem implies the equivalence of these

5One can also formulate this question locally at A by asking that this hold under all faithful non-degenerate
representations of A.

6Similarly define A ⊂cb,γ B if and only if A⊗Mn ⊂γ B⊗Mn for all n ≥ 1.
7A local version of this statement also holds: A has the similarity property if and only if dcb(A, ·) is

equivalent to d(A, ·).
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metrics is noted at the end of [9, Section 4]. The converse follows as Arveson’s distance
formula shows that A ⊂cb,γ B =⇒ B′ ⊂cb,γ A′ (see [3, Proposition 2.2.3]) and so

d(A′,B′) ≤ dcb(A
′,B′) ≤ 2dcb(A,B).

Acknowledgements. When SW presented the work of [3] in Vanderbilt University in Jan-
uary 2012, Dietmar Bisch asked whether it was necessary to use the similarity property in
order to take commutants of close C∗-algebras. This directly sparked the present paper and
we are grateful to Dietmar for bringing this question to our attention.
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