
ar
X

iv
:m

at
h/

06
01

59
4v

1 
 [

m
at

h.
O

A
] 

 2
4 

Ja
n 

20
06

STRONG SINGULARITY OF SINGULAR MASAS

IN II1 FACTORS

Allan M. Sinclair Roger R. Smith∗

Stuart A. White Alan Wiggins

School of Mathematics Department of Mathematics
University of Edinburgh Texas A&M University

Edinburgh EH9 3JZ College Station, TX 77843
Scotland USA

A.Sinclair@ed.ac.uk rsmith@math.tamu.edu

s.a.white-1@ed.ac.uk awiggins@math.tamu.edu

Abstract

A singular masa A in a II1 factor N is defined by the property that any unitary

w ∈ N for which A = wAw∗ must lie in A. A strongly singular masa A is one that

satisfies the inequality

‖EA − EwAw∗‖∞,2 ≥ ‖w − EA(w)‖2

for all unitaries w ∈ N , where EA is the conditional expectation of N onto A, and

‖ · ‖∞,2 is defined for bounded maps φ : N → N by sup{‖φ(x)‖2 : x ∈ N, ‖x‖ ≤ 1}.

Strong singularity easily implies singularity, and the main result of this paper shows

the reverse implication.
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1 Introduction

In [13], the first two authors introduced the concept of a strongly singular maximal

abelian self–adjoint subalgebra (masa) in a II1 factor N . For a bounded map φ : M →

N between any two finite von Neumann algebras with specified traces, the ‖·‖∞,2–norm

is defined by

‖φ‖∞,2 = sup{‖φ(x)‖2 : x ∈ M, ‖x‖ ≤ 1}. (1.1)

A masa A ⊆ N is then said to be strongly singular when the inequality

‖EA − EwAw∗‖∞,2 ≥ ‖w − EA(w)‖2 (1.2)

holds for all unitaries w ∈ N , where the notation EB indicates the unique trace pre-

serving conditional expectation onto a von Neumann subalgebra B. Any unitary which

normalizes A is forced, by this relation, to lie in A, and so A is singular, as defined

in [3]. The original purpose for introducing strong singularity was to have a metric

condition which would imply singularity, and which would be easy to verify in a wide

range of cases (see [13, 14] and the work of the third author, [15], on Tauer masas

in the hyperfinite II1 factor R). Subsequently, [11], it was shown that every singular

masa in a separable II1 factor (where this terminology indicates norm–separability of

the predual N∗) satisfies the following weaker inequality, analogous to (1.2):

90‖EA − EwAw∗‖∞,2 ≥ ‖w − EA(w)‖2 (1.3)

holds for all unitaries w ∈ N . This clearly suggested that every singular masa should

be strongly singular, and our objective in this paper is to prove this result.

In 1983 Sorin Popa introduced the δ–invariant for a masa in a II1 factor, [7]. This

was the first attempt to define a metric based invariant for a masa, which he used

to show that there is an abundance of singular masas in separable II1 factors, [7].

Subsequently Popa, [8], showed that a masa in a separable II1 factor is singular if, and

only if, it has δ–invariant 1. An invariant α(A) for a masa A in a II1 factor, based

on unitary perturbations of A, was defined by the first two authors in [13] with strong

singularity corresponding to α(A) = 1. In that paper the masa A was shown to be

singular if α(A) > 0. Theorem 2.3 implies that a masa in a separable II1 factor is

singular if, and only if, it is strongly singular. This is the analogous result to Popa’s

δ–invariant one with unitaries in N replacing his nilpotent partial isometries, whose

domains and ranges are orthogonal projections in the masa. For a masa A in a separable

II1 factor the results in [8] show that δ(A) is either 0 or 1, and Theorem 2.3 implies

that α(A) also takes only these two values (see [13] for the definition of α(A)).

The main result of the paper is Theorem 2.3, the proof of which is given in the

lemmas that precede it. These in turn are based on results of Sorin Popa, [10, Thm.

2.1, Cor. 2.3], which have their origin in [9]. We also give two applications of our
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results. One shows the singularity of tensor products of singular masas (Corollary 2.4),

while the other shows that singular masas can usually be studied in the setting of

separable algebras (Theorem 2.5).

Much of the work in this paper was accomplished at the Spring Institute on Non-

commutative Geometry and Operator Algebras, held May 9–20 2005 at Vanderbilt

University. The lecture series presented by Sorin Popa at this conference provided the

basis for our results below. It is a pleasure to express our gratitude to the organizers

and to the NSF for providing financial support during the conference.
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2 Main Results

Our first lemma is essentially contained in [10, Corollary 2.3]. The proof will amount

to identifying the subalgebras to which this corollary is applied.

Lemma 2.1. Let A be a masa in a II1 factor N and let e, f ∈ A be nonzero projections

with the property that no nonzero partial isometry w ∈ N satisfies the conditions

ww∗, ww∗ ∈ A, ww∗ ≤ e, w∗w ≤ f, and w∗Aw = Aw∗w. (2.1)

If ε > 0 and x1, . . . , xk ∈ N are given, then there exists a unitary u ∈ A such that

‖EA(fxieux∗
jf)‖2 < ε (2.2)

for 1 ≤ i, j ≤ k.

Proof. Define two subalgebras B0 = Ae and B = Af of N . The hypothesis implies

the negation of the fourth condition for B0 and B in [10, Theorem 2.1] and so [10,

Corollary 2.3] can be applied. Thus, given a1, . . . , ak ∈ N and ε > 0, there exists a

unitary u1 ∈ B0 such that

‖EB(aiu1a
∗
j)‖2 < ε, 1 ≤ i, j ≤ k. (2.3)

The result follows from this by taking ai = fxie, 1 ≤ i ≤ k, replacing u1 by the unitary

u = u1 +(1−e) ∈ A, and replacing EB in (2.3) by EA. Note that these two conditional

expectations agree on fNf .

Below, we will use the notation U(M) for the unitary group of any von Neumann

algebra M . We will also need the well known fact that if x ∈ M and B is a von Neumann

subalgebra, then EB′∩M (x) is the unique element of minimal norm in the ‖ · ‖2–closure

of conv {uxu∗ : u ∈ U(B)}. We do not have an exact reference for this, but it is implicit

in [1].

Lemma 2.2. Let A be a singular masa in a II1 factor N . If x1, . . . , xk ∈ N and ε > 0

are given, then there is a unitary u ∈ A such that

‖EA(xiux∗
j) − EA(xi)uEA(x∗

j )‖2 < ε (2.4)

for 1 ≤ i, j ≤ k.

Proof. If x, y ∈ N and u ∈ A, then

EA(xuy∗) − EA(x)uEA(y∗) = EA((x − EA(x))uEA(y − EA(y))∗) (2.5)

by the module properties of EA. Thus (2.4) follows if we can establish that

‖EA(xiux∗
j )‖2 < ε, 1 ≤ i, j ≤ k, (2.6)
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when the xi’s also satisfy EA(xi) = 0 for 1 ≤ i ≤ k. We assume this extra condition,

and prove (2.6). By scaling, there is no loss of generality in assuming ‖xi‖ ≤ 1 for

1 ≤ i ≤ k.

Let δ = ε/4. In the separable case, [7] gives a finite dimensional abelian subalgebra

A1 ⊆ A with minimal projections e1, . . . , en such that

‖EA′

1
∩N (xi) − EA(xi)‖2 < δ (2.7)

for 1 ≤ i ≤ k. The assumption that EA(xi) = 0 allows us to rewrite (2.7) as

‖EA′

1
∩N (xi)‖2 = ‖EA(xi) − EA′

1
∩N (xi)‖2 < δ (2.8)

for 1 ≤ i ≤ k, leading to

‖
n∑

m=1

emxiem‖2 = ‖EA′

1
∩N (xi)‖2 < δ (2.9)

since
∑n

m=1
emxiem = EA′

1
∩N (xi). Any partial isometry v ∈ N satisfying vAv∗ = Avv∗

has the form pu for a projection p ∈ A and a normalizing unitary u ∈ N , [4, 5].

The singularity of A then shows that v ∈ A, making it impossible to satisfy the two

inequalities vv∗ ≤ em and v∗v ≤ (1−em) simultaneously unless v = 0. Thus no nonzero

partial isometry v ∈ N satisfies vv∗ ≤ em, v∗v ≤ (1 − em), and vAv∗ = Avv∗. The

hypothesis of Lemma 2.1 is satisfied, and applying this result with ε replaced by δ/n

gives unitaries um ∈ A such that

‖EA((1 − em)xiemumx∗
j(1 − em))‖2 < δ/n (2.10)

for 1 ≤ m ≤ n and 1 ≤ i, j ≤ k. Define a unitary u ∈ A by u =
∑n

m=1
umem, and let

yi =
∑n

m=1
(1 − em)xiem, for 1 ≤ i ≤ k. We have

xi − yi = xi −

n∑

m=1

(1 − em)xiem =

n∑

m=1

emxiem = EA′

1
∩N (xi) (2.11)

for 1 ≤ i ≤ k. The inequalities

‖xi − yi‖2 < δ, ‖xi − yi‖ ≤ ‖xi‖ ≤ 1, ‖yi‖ ≤ 2, (2.12)

for 1 ≤ i ≤ k, follow immediately from (2.8) and (2.11).

If we apply EA to the identity

xiux∗
j = (xi − yi)ux∗

j + yiu(x∗
j − y∗j ) + yiuy∗j , (2.13)

then (2.12) gives

‖EA(xiux∗
j)‖2 ≤ ‖xi − yi‖2 + ‖yi‖‖xj − yj‖2 + ‖EA(yiuy∗j )‖2

< 3δ + ‖EA(yiuy∗j )‖2, (2.14)
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and we estimate the last term. The identity

yiuy∗j =

n∑

m,s=1

(1 − em)xiemuesx
∗
j(1 − es) =

n∑

m=1

(1 − em)xiemumx∗
j(1 − em) (2.15)

holds because each es commutes with u and emes = 0 for m 6= s. The last sum has n

terms, so the inequalities

‖EA(yiuy∗j )‖2 < δ, 1 ≤ i, j ≤ k, (2.16)

are immediate from (2.10). Together (2.14) and (2.16) yield

‖EA(xiux∗
j )‖2 < 3δ + δ = ε, 1 ≤ i, j ≤ k, (2.17)

as required.

In the general case, we obtain A1 and (2.7) as follows. Since A is a masa,

EA′∩N (xi) = EA(xi) = 0, 1 ≤ i ≤ k. (2.18)

Now EA′∩N (xi) is the element of minimal ‖ · ‖2–norm in the ‖ · ‖2–closed convex hull

of {wxiw
∗ : w ∈ U(A)}, so we may select a finite number of unitaries w1, . . . , wr ∈ A

such that each set Ωi = conv {wjxiw
∗
j : 1 ≤ j ≤ r}, 1 ≤ i ≤ k, contains an element

whose ‖ · ‖2–norm is less than δ. The spectral theorem allows us to make the further

assumption that each wj has finite spectrum, whereupon these unitaries generate a

finite dimensional subalgebra A1 ⊆ A. Then, for 1 ≤ i ≤ k, EA′

1
∩N (xi) is the element

of smallest norm in the ‖ ·‖2–closed convex hull of {wxiw
∗ : w ∈ U(A1)}, and since this

set contains Ωi, we see that (2.7) is valid in general.

In [13], a masa A in a II1 factor N was defined to have the asymptotic homomor-

phism property (AHP) if there exists a unitary v ∈ A such that

lim
|n|→∞

‖EA(xvny) − EA(x)vn
EA(y)‖2 = 0 (2.19)

for all x, y ∈ N . In that paper it was shown that strong singularity is a consequence of

this property. Subsequently it was observed in [12, Lemma 2.1] that a weaker property,

which we will call the weak asymptotic homomorphism property , (WAHP), suffices to

imply strong singularity: given ε > 0 and x1, . . . , xk, y1, . . . , yk ∈ N , there exists a

unitary u ∈ A such that

‖EA(xiuyj) − EA(xi)uEA(yj)‖2 < ε (2.20)

for 1 ≤ i, j ≤ k. Since the WAHP is a consequence of applying Lemma 2.2 to the set

of elements x1, . . . , xk, y
∗
1 , . . . , y

∗
k ∈ N , we immediately obtain the main result of the

paper from these remarks:
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Theorem 2.3. Let A be a singular masa in a II1 factor N . Then A has the WAHP

and is strongly singular.

The following observation on the tensor product of masas may be known to some

experts, but we have not found a reference.

Corollary 2.4. For i = 1, 2, let Ai ⊆ Ni be masas in II1 factors. If A1 and A2 are

both singular, then A1⊗A2 is also a singular masa in N1⊗N2.

Proof. Lemma 2.2 and the remarks preceding Theorem 2.3 show that singularity and

the WAHP are equivalent for masas in II1 factors. By Tomita’s commutant theorem,

A1⊗A2 is a masa in N1⊗N2, and it is straightforward to verify that the WAHP carries

over to tensor products (see [16, Proposition 1.4.27]), since it suffices to check this

property on a ‖ · ‖2–norm dense set of elements, in this case the span of {x ⊗ y : x ∈

N1, y ∈ N2}.

As an application of these results, we end by showing that the study of singular

masas can, in many instances, be reduced to the separable case. The techniques of the

proof have their origin in [2, Section 7].

Theorem 2.5. Let N be a II1 factor with a singular masa A and let M0 be a separable

von Neumann subalgebra of N . Then there exists a separable subfactor M such that

M0 ⊆ M ⊆ N and M ∩ A is a singular masa in M .

Proof. We will construct M as the weak closure of the union of an increasing sequence

M0 ⊆ M1 ⊆ M2 ⊆ . . . of separable von Neumann subalgebras, chosen by induction.

These will have an increasing sequence of abelian subalgebras Bk ⊆ Mk with certain

properties.

For a von Neumann algebra Q ⊆ N and for any x ∈ N , KQ(x) will denote the

set conv {uxu∗ : u ∈ U(Q)}, and the ‖ · ‖– and ‖ · ‖2–closures will be denoted Kn
Q(x)

and Kw
Q(x) respectively. The inclusions KQ(x) ⊆ Kn

Q(x) ⊆ Kw
Q(x) are immediate. The

induction hypothesis is: each Mk is separable, Mk ⊆ Mk+1, and for a fixed sequence

{yk,r}
∞
r=1 in the unit ball of Mk which is ‖ · ‖2–dense in the ‖ · ‖2–closure of this ball,

(i) EA(yk,r) ∈ Bk+1 ∩ Kw
Bk+1

(yk,r) for r ≥ 1, where Bk+1 = Mk+1 ∩ A;

(ii) Kn
Mk+1

(yk,r) ∩ C1 is nonempty for r ≥ 1;

(iii) given ε > 0, r ≥ 1 and a projection p ∈ Bk, there exists u ∈ U(Bk+1) such that

‖EA((1 − p)yk,spuy∗k,t(1 − p))‖2 < ε

for all 1 ≤ s, t ≤ r.
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We first show that such a sequence of algebras leads to the desired conclusion. Let

M and B be respectively the weak closures of the unions of the Mk’s and Bk’s. Since

Kn
Mk

(x) ⊆ Kn
M (x) for all x ∈ M and k ≥ 1, condition (ii) and a simple approximation

argument show that Kw
M (x) contains a scalar operator for all x in the unit ball of M ,

and thus for all x ∈ M by scaling. Since Kw
M (z) = {z} for any central element z ∈ M ,

this shows that M is a factor, separable by construction.

Now consider x ∈ M ; scaling allows us to assume without loss of generality that

‖x‖ ≤ 1. Condition (i) shows that EA(yk,r) ∈ Kw
B(yk,r) for k, r ≥ 1, and an approxima-

tion argument then shows that EA(x) ∈ Kw
B (x) ⊆ Kw

A(x). Since EA(x) is the element

of minimal ‖ · ‖2–norm in Kw
A (x), it also has this property in Kw

B(x). But this minimal

element is EB′∩M (x), showing that EB′∩M (x) = EA(x). If we further suppose that

x ∈ B′ ∩ M , then x = EA(x). Thus B′ ∩ M ⊆ A and is abelian. Condition (i) also

shows that EA(x) ∈ B, and so B′ ∩ M ⊆ B. Since B is abelian, we have equality,

proving that B is a masa in M . We can now conclude that EA(y) = EB(y) for all

y ∈ M , and that B = M ∩ A.

Another ‖ · ‖2–approximation argument, starting from (iii), gives

inf { max
1≤i,j≤r

‖EB((1 − p)xipux∗
j (1 − p))‖2 : u ∈ U(B)} = 0 (2.21)

for an arbitrary finite set of elements x1, . . . , xr ∈ M , ‖xi‖ ≤ 1, and any projection p ∈

B, noting that EA and EB agree on M . By scaling, it is clear that this equation holds

generally without the restriction ‖xi‖ ≤ 1. We have now established the conclusion of

Lemma 2.1 for B from which singularity of B follows, as in the proof of Lemma 2.2.

It remains to construct the appropriate subalgebras Mk.

To begin the induction, let B0 = M0 ∩ A, and suppose that Bk ⊆ Mk have been

constructed. Consider a fixed sequence {yk,r}
∞
r=1 in the unit ball of Mk, ‖ · ‖2–dense in

the ‖ · ‖2–closure of this ball. The Dixmier approximation theorem, [6, Theorem 8.3.5],

allows us to obtain a countable number of unitaries, generating a separable subalgebra

Q0 ⊆ N , so that Kn
Q0

(yk,r) ∩ C1 is nonempty for r ≥ 1. Let {pm}∞m=1 be a sequence

which is ‖ · ‖2–dense in the set of all projections in Bk. The singularity of A ensures

that the hypothesis of Lemma 2.1 is met when e = pm and f = 1 − pm. Thus, for

integers m, r, s ≥ 1, there is a unitary um,r,s ∈ A such that

‖EA((1 − pm)yk,ipmum,r,sy
∗
k,j(1 − pm))‖2 < 1/s (2.22)

for 1 ≤ i, j ≤ r. These unitaries generate a separable von Neumann algebra Q1 ⊆ A,

and an approximation argument establishes (iii) provided that Q1 ⊆ Bk+1.

Since EA(yk,r) is the minimal ‖ · ‖2–norm element in Kw
A(yk,r), we may find a

countable number of unitaries generating a separable subalgebra Q2 ⊆ A so that

EA(yk,r) ∈ Kw
Q2

(yk,r) for r ≥ 1. The proof is completed by letting Mk+1 be the
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separable von Neumann algebra generated by Mk, EA(Mk), Q0, Q1 and Q2. The sub-

spaces EA(Mk) and Q2 are included to ensure that (i) is satisfied, (ii) holds by the

choice of Q0, and Q1 guarantees the validity of (iii).
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Adv. Appl., by Birkhäuser, Boston, 1982.

[6] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras,

Vol. II, Academic Press, Orlando, 1986.

[7] S. Popa, Singular maximal abelian *-subalgebras in continuous von Neumann

algebras, J. Funct.Anal., 50 (1983), 155–166.

[8] S. Popa, On the distance between masas in type II1 factors, M athematical physics

in mathematics and physics (Siena, 2000), 321–324, Fields Inst. Commun., 30,

Amer. Math. Soc., Providence, RI, 2001.

[9] S. Popa, On a class of type II1 factors with Betti numbers invariants, Ann. Math.,

to appear.

[10] S. Popa, Strong rigidity of II1 factors arising from malleable actions of w–rigid

groups, I, preprint, UCLA, 2003.

[11] S. Popa, A.M. Sinclair and R.R. Smith, Perturbations of subalgebras of type

II1 factors, J. Funct. Anal., 213 (2004), 346–379. (See Mathematics ArXiv

math.OA/0305444 for a corrected version)

[12] G. Robertson, A.M. Sinclair and R.R. Smith, Strong singularity for subalgebras

of finite factors, Internat. J. Math., 14 (2003), 235-258.

[13] A.M. Sinclair and R.R. Smith, Strongly singular masas in type II1 factors, Geom.

and Funct. Anal., 12 (2002), 199-216.

[14] A.M. Sinclair and R.R. Smith, The Laplacian masa in a free group factor, Trans.

A.M.S., 355 (2003), 465-475.

[15] S. A. White, Tauer masas in the hyperfinite II1 factor, Quart. J. Math. Oxford

Ser. (2), to appear.

[16] S. A. White, Tauer masas in the hyperfinite II1 factor, Ph.D. thesis, University of

Edinburgh, 2005.

10

http://arXiv.org/abs/math/0305444

	Introduction
	Main Results

