Math 412/512 Assignment 1

Due Wednesday, January 19

1) Given two vectors $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\vec{w}\left\langle w_{1}, w_{2}, w_{3}\right\rangle$ in \mathbb{R}^{3}, recall that their cross-product is given by

$$
\vec{v} \times \vec{w}=\left\langle v_{2} w_{3}-v_{3} w_{2}, v_{3} w_{1}-v_{1} w_{3}, v_{1} w_{2}-v_{2} w_{1}\right\rangle
$$

Note that " x " is a (binary) operation.
a) Is " \times " commutative? Justify your answer.
b) Is " \times " associative? Justify your answer.
c) Is there an identity for " \times "? If so, exhibit the identity. If not, show why there can be no identity.
2) (See p. 30 in the text) If A and B are two subsets of a larger set D, their symmetric difference is the set $A+B$ defined by

$$
A+B=(A \backslash B) \cup(B \backslash A)=\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)
$$

where the notation A^{c} refers to all elements in D that are NOT in A, called the complement of A.

The power set of D is the set P_{D} of all subsets of D. Consider " + " as a binary operation on P_{D}.
a) Exhibit the identity element of $\left\langle P_{D},+\right\rangle$.
b) Given $A \subset D$, exhibit the inverse of A in $\left\langle P_{D},+\right\rangle$. Thus, $\left\langle P_{D},+\right\rangle$ is a group.
c) Let D be the three-element set $D=\{a, b, c\}$. List the elements of P_{D}. Do not forget the empty set and the whole set D. Then write the operation table for $\left\langle P_{D},+\right\rangle$.
3) There are two possible distinct (up to isomorphism) group structures on a four element set $\{a, b, c, d\}$. Determine them, i.e., construct the operation tables. (Hint: both groups are commutative.)
4) Show that if $\langle G, \cdot\rangle$ is a group and $x, y \in G, x \cdot y=y \cdot x$, then $(x \cdot y)^{n}=x^{n} \cdot y^{n}$.
5) Prove that, with the operation of multiplication, $G=\{x+y \sqrt{17} \mid x, y \in$ $\mathbb{Q}\} \backslash\{0\}$ is a group. You may assume associativity is inherited from $\langle\mathbb{R} \backslash\{0\}, \cdot\rangle$.

