Math 412/512 Assignment 2

Due Wednesday, January 26

1) Consider a four element set $S=\{a, b, c, d\}$. Consider the following operation tables on S, both of which induce a group structure on S.

\cdot	a	b	c	d
a	a	b	c	d
b	b	d	a	c
c	c	a	d	b
d	d	c	b	a

$*$	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	a	b	c

Define $\phi:\langle S, \cdot\rangle \rightarrow\langle S, *\rangle$ by

$$
\phi(a)=a, \quad \phi(b)=b, \quad \phi(c)=d, \quad \phi(d)=c .
$$

Show that, for all elements n and m in $\{b, c, d\}, \phi(n \cdot m)=\phi(n) * \phi(m)$.
2) Determine that the groups \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are not isomorphic. Hint: argue by contradiction.
3) (See Chapter 9, Section E, \#4 in the text) Show that $\langle\mathbb{R} \backslash\{0\}, \cdot\rangle$ and $\langle\mathbb{R},+\rangle$ are not isomorphic. Hint: consider $-1 \in\langle\mathbb{R} \backslash\{0\}, \cdot\rangle$.
4) Let S_{∞} denote the set of all bijections from \mathbb{N} to \mathbb{N} that fix all but a finite number of elements, with function composition as the operation. So for example,

$$
\phi(n)= \begin{cases}1 & \text { if } n=2 \\ 2 & \text { if } n=1 \\ n & \text { if } n \geq 2\end{cases}
$$

determines an element $\phi \in S_{\infty}$ since only two elements of \mathbb{N} are not fixed by ϕ, but

$$
\gamma(n)= \begin{cases}n+1 & \text { if } n \text { is odd } \\ n-1 & \text { if } n \text { is even }\end{cases}
$$

does not determine an element of S_{∞} since γ does not fix any elements of \mathbb{N}.
a) Show that S_{∞} is a group.
b) Let $T \subset S_{\infty}$ be the subset of all bijections ϕ with the property that $\phi(1)=1$. Is T is a subgroup of S_{∞} ?
5) (See Chapter 5, Section D) Let $\langle G, \cdot\rangle$ be a group.
a) Suppose H and K are subgroups of $\langle G, \cdot\rangle$. Show that $H \cap K$ is also a subgroup of $\langle G, \cdot\rangle$.
b) Is it always the case that if H and K are subgroups of $\langle G, \cdot\rangle$ then $H \cup K$ is a subgroup of $\langle G, \cdot\rangle$? Prove or give a counterexample.
c) Let H be a subgroup of $\langle G, \cdot\rangle$ and for $x \in G$, let

$$
x H x^{-1}=\left\{x a x^{-1}: a \in H\right\} .
$$

Define

$$
K=\left\{x \in G: x H x^{-1}=H .\right\}
$$

Show that $H \subseteq K$ and that K is a subgroup of $\langle G, \cdot\rangle . K$ is called the normalizer of H in $\langle G, \cdot\rangle$, and is usually denoted by $N_{G}(H)$.
d) If $\langle G, \cdot\rangle$ is abelian, determine the normalizer of all subgroups H of $\langle G, \cdot\rangle$.
6) (see the previous question) A subgroup H of $\langle G, \cdot\rangle$ is called malnormal if $N_{G}(H)=H$. Prove that S_{3} has a proper malnormal subgroup.
7) Is the set of nonzero real numbers whose square is an irrational number a subgroup of $\langle\mathbb{R} \backslash\{0\}, \cdot\rangle$?

