Math 412/512 Assignment 2

Due Wednesday, January 26

1) Consider a four element set $S = \{a, b, c, d\}$. Consider the following operation tables on S, both of which induce a group structure on S.

•	a	b	С	d
a	a	b	с	d
b	b	d	a	с
С	с	a	d	b
d	d	с	b	a

d	*	a	b	С	d
d	a	a	b	с	d
c	b	b	с	d	a
b	С	с	d	a	b
a	d	d	a	b	с

Define $\phi: \langle S, \cdot \rangle \to \langle S, * \rangle$ by

$$\phi(a) = a, \ \phi(b) = b, \ \phi(c) = d, \ \phi(d) = c.$$

Show that, for all elements n and m in $\{b, c, d\}$, $\phi(n \cdot m) = \phi(n) * \phi(m)$.

2) Determine that the groups \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ are not isomorphic. *Hint:* argue by contradiction.

3) (See Chapter 9, Section E, #4 in the text) Show that $\langle \mathbb{R} \setminus \{0\}, \cdot \rangle$ and $\langle \mathbb{R}, + \rangle$ are not isomorphic. *Hint:* consider $-1 \in \langle \mathbb{R} \setminus \{0\}, \cdot \rangle$.

4) Let S_{∞} denote the set of all bijections from \mathbb{N} to \mathbb{N} that fix all but a finite number of elements, with function composition as the operation. So for example,

$$\phi(n) = \begin{cases} 1 & \text{if } n = 2\\ 2 & \text{if } n = 1\\ n & \text{if } n \ge 2 \end{cases}$$

determines an element $\phi \in S_{\infty}$ since only two elements of \mathbb{N} are not fixed by ϕ , but

$$\gamma(n) = \begin{cases} n+1 & \text{if } n \text{ is odd} \\ n-1 & \text{if } n \text{ is even} \end{cases}$$

does not determine an element of S_{∞} since γ does not fix any elements of \mathbb{N} .

a) Show that S_{∞} is a group.

b) Let $T \subset S_{\infty}$ be the subset of all bijections ϕ with the property that $\phi(1) = 1$. Is T is a subgroup of S_{∞} ?

5) (See Chapter 5, Section D) Let $\langle G, \cdot \rangle$ be a group.

a) Suppose H and K are subgroups of $\langle G, \cdot \rangle$. Show that $H \cap K$ is also a subgroup of $\langle G, \cdot \rangle$.

b) Is it always the case that if H and K are subgroups of $\langle G, \cdot \rangle$ then $H \cup K$ is a subgroup of $\langle G, \cdot \rangle$? Prove or give a counterexample.

c) Let H be a subgroup of $\langle G, \cdot \rangle$ and for $x \in G$, let

$$xHx^{-1} = \{xax^{-1} : a \in H\}.$$

Define

$$K = \{x \in G : xHx^{-1} = H.\}$$

Show that $H \subseteq K$ and that K is a subgroup of $\langle G, \cdot \rangle$. K is called the *normalizer* of H in $\langle G, \cdot \rangle$, and is usually denoted by $N_G(H)$.

d) If $\langle G, \cdot \rangle$ is abelian, determine the normalizer of all subgroups H of $\langle G, \cdot \rangle$.

6) (see the previous question) A subgroup H of $\langle G, \cdot \rangle$ is called *malnormal* if $N_G(H) = H$. Prove that S_3 has a proper malnormal subgroup.

7) Is the set of nonzero real numbers whose square is an irrational number a subgroup of $\langle \mathbb{R} \setminus \{0\}, \cdot \rangle$?