Math 412/512 Assignment 3

Due Wednesday, February 2

1) (See Chapter 5, Section E) a) Prove that $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ is a cyclic group.
b) Prove that $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ is not a cyclic group.
c) Is $\mathbb{Z}_{30} \times \mathbb{Z}_{77}$ a cyclic group? Either prove or give a counterexample.
d) Conjecture when $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ is cyclic. Don't prove your guess, thoughunless you want some extra credit!
2) An automorphism is an isomorphism from a group $\langle G, \cdot\rangle$ to itself. The collection of all automorphisms of $\langle G, \cdot\rangle$ is denoted by $\operatorname{Aut}(G)$.
a) Prove that $\operatorname{Aut}(G)$ is a subgroup of the group of all bijections on G with the operation of function composition.
b) $\operatorname{Aut}\left(\mathbb{Z}_{5}\right)$ and $\operatorname{Aut}\left(\mathbb{Z}_{6}\right)$ are each isomorphic to \mathbb{Z}_{n} for some n. Determine the values of n.
3) Determine the center of the group of invertible 2×2 matrices with entries in \mathbb{R} under the operation of matrix multiplication.
4) (See Chapter 8, Section H) a) Show that S_{3} is generated by the set $\{(12),(13)\}$.
b) Show that S_{n} is generated by the set $\{(12),(13), \ldots,(1 n)\}$. Hint: you may use the fact that S_{n} is generated by transpositions.
5) (Extra credit) Prove that if $n \geq 4$, the number of elements in S_{n} which are the product of disjoint transpositions is $\frac{n(n-1)(n-2)(n-3)}{8}$.
