Math 412/512 Assignment 6

Due Friday, March 25

1) Complete the proof, begun in class, that $\mathbb{Z}[x]$ is a ring by showing distributivity.
2) (See Chapter 17, Section E) In $M_{2}(\mathbb{C})$, let

$$
\begin{gathered}
I=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \mathbf{i}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \\
\mathbf{j}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \mathbf{k}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
\end{gathered}
$$

a) Verify that $\mathbf{i} \mathbf{j}=\mathbf{k}, \mathbf{j} \mathbf{k}=\mathbf{i}, \mathbf{k i}=\mathbf{j}$, and $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-I$.
b) Show that if a, b, c, and d are real numbers, then

$$
S=\{a I+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \mid a, b, c, \text { and } d \in \mathbb{R}\}
$$

is a subring of $M_{2}(\mathbb{C})$.
c) Prove that there is a nontrivial ring structure on \mathbb{R}^{4}.
3) Show that if R is a ring, I is an ideal of R, and 1_{R} is the multiplicative identity of R, then $1_{R} \in I$ implies $I=R$.
4) The upper triangular matrices consist of all $T=\left(T_{i, j}\right)_{i, j=1}^{n} \in M_{n}(\mathbb{R})$ such that $T_{i, j}=0$ if $i>j$.
a) Exhibit an upper triangular matrix in $M_{3}(\mathbb{R})$.
b) Show that the upper triangular matrices in $M_{3}(\mathbb{R})$ are a subring of $M_{3}(\mathbb{R})$.
c) Are the upper triangular matrices in $M_{3}(\mathbb{R})$ an ideal in $M_{3}(\mathbb{R})$? Prove or disprove.
d) (Extra Credit) Prove that $M_{n}(\mathbb{R})$ admits no nontrivial proper ideals. You may receive some credit by demonstrating this fact for $M_{3}(\mathbb{R})$.
5) (See Chapter 18, Section H) Recall that $C_{0}(\mathbb{R})$ is the ring of all continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $\lim _{|x| \rightarrow \infty} f(x)=0$. Fix a real number x and define

$$
I_{x}=\left\{f \in C_{0}(\mathbb{R}) \mid f(x)=0\right\} .
$$

a) Show that, for any choice of x, I_{x} is an ideal in $C_{0}(\mathbb{R})$.
b) Prove that I_{x} is a maximal ideal.

