Math 412/512 Assignment 7

Due Wednesday, April 6

1) For a unital ring R, let R^{\times} denote the set of all units.

a) Prove that $\langle R^{\times}, \cdot \rangle$ is a group, where "." is the multiplication operation on R.

- b) Determine the group isomorphism class of $\mathbb{Z}[x]^{\times}$.
- c) If R and S are unital rings, determine $(R \times S)^{\times}$.

2) (Group ring) Let G be a finite group. Recall from Cayley's Theorem that there exists an injective homomorphism $\phi : G \to S_n$ where n = |G|. Also note that for a matrix $T \in M_n(\mathbb{C})$, $T_{i,j}$ refers to the entry of T in the *i*th row and *j*th column for $1 \leq i, j \leq n$.

a) Define $\psi_n : S_n \to GL_n(\mathbb{C})$ by

$$(\psi_n(\sigma))_{i,j} = \begin{cases} 1 & \text{if } \sigma(i) = j \\ 0 & \text{otherwise} \end{cases}$$

for all $\sigma \in S_n$. Prove that ψ is well-defined (i.e. that $\psi(\sigma)$ is actually invertible for all $\sigma \in S_n$) and a homomorphism of groups.

b) Define the complex *Group ring* of G to be the linear span of the image $\psi_n(\phi(G))$. Show that this is, indeed, a ring with unit. The notation is $\mathbb{C}[G]$.

c) Determine necessary and sufficient conditions on G that guarantee $\mathbb{C}[G]$ is commutative.

3) a) Let R be an integral domain and let $x, y \in R$. Show that if $x^2 = y^2$, then x = y or x = -y.

b) Give an example of a ring R where $x^2 = y^2$ does not necessarily imply either x = y or x = -y for $x, y \in R$. Be sure to prove that your example actually works.

c) (Extra Credit) Provide an example of a ring R with no zero divisors where $x^2 = y^2$ does not necessarily imply either x = y or x = -y for $x, y \in R$. Again, be sure to prove that your example is correct. Note that your answer for b) may provide you with such an example!

4) Show that every field is a Euclidean domain.

5) Prove that $\mathbb{Z}[x]$ is not a principal ideal domain. *Hint:* Consider $\{p \in \mathbb{Z}[x] \mid p \text{ has an even constant coefficient}\}$.