Math 412/512 Assignment 1

Due Tuesday, September 20

1) Use mathematical induction to complete parts a) and b).

a) (#50, Chapter 0) Let S be a set with n elements for some $n \in \mathbb{N}$. Prove that there are 2^n distinct subsets of S.

b) Show that
$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$
.

c) Extra credit: do part b) without using induction!

2) Let S, T, and U be sets and let $f: T \to U, g: S \to T$.

a) Prove that if $f \circ g$ is bijective, then f is surjective and g is injective.

b) If f is injective and g is surjective, does it then follow that $f \circ g$ must be bijective? Prove or give a counterexample.

c) Verify that if S is finite, then any injection from S to itself is also surjective.

d) Give an example of an injection $f : \mathbb{N} \to \mathbb{N}$ that is not surjective.

3) Let $S = \{n \in \mathbb{Z} : \text{either } 2|n \text{ or } 3|n\}$. Determine whether S is a group under the operation of addition.

4) Recall that for a 2 × 2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C}),$

 $\det(A) = ad - bc.$

Prove or disprove that $S = \{A \in M_2(\mathbb{C}) : |\det(A)| = 1\}$ is a group with the operation of matrix multiplication (you may assume associativity).

5) (#26, Chapter 2) Let G be a group. Show that if $g, h \in G$ and $(g \cdot h)^2 = g^2 \cdot h^2$, then G is abelian (recall that for $k \in G$, k^2 is defined as $k \cdot k$).