## Math 412/512 Assignment 1

## Due Tuesday, September 20

1) Use mathematical induction to complete parts a) and b).
a) (\#50, Chapter 0) Let $S$ be a set with $n$ elements for some $n \in \mathbb{N}$. Prove that there are $2^{n}$ distinct subsets of $S$.
b) Show that $\sum_{i=1}^{n} i^{4}=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}$.
c) Extra credit: do part b) without using induction!
2) Let $S, T$, and $U$ be sets and let $f: T \rightarrow U, g: S \rightarrow T$.
a) Prove that if $f \circ g$ is bijective, then $f$ is surjective and $g$ is injective.
b) If $f$ is injective and $g$ is surjective, does it then follow that $f \circ g$ must be bijective? Prove or give a counterexample.
c) Verify that if $S$ is finite, then any injection from $S$ to itself is also surjective.
d) Give an example of an injection $f: \mathbb{N} \rightarrow \mathbb{N}$ that is not surjective.
3) Let $S=\{n \in \mathbb{Z}$ : either $2 \mid n$ or $3 \mid n\}$. Determine whether $S$ is a group under the operation of addition.
4) Recall that for a $2 \times 2$ matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{C})$,

$$
\operatorname{det}(A)=a d-b c
$$

Prove or disprove that $S=\left\{A \in M_{2}(\mathbb{C}):|\operatorname{det}(A)|=1\right\}$ is a group with the operation of matrix multiplication (you may assume associativity).
5) (\#26, Chapter 2) Let $G$ be a group. Show that if $g, h \in G$ and $(g \cdot h)^{2}=$ $g^{2} \cdot h^{2}$, then $G$ is abelian (recall that for $k \in G, k^{2}$ is defined as $k \cdot k$ ).

