Math 412/512 Assignment 2

Due Thursday, September 29

1) Let

$$
G=\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\} \subseteq M_{3}(\mathbb{R})
$$

a) Check that G is a group with the operation of matrix multiplication.
b) Prove that

$$
H=\left\{\left.\left(\begin{array}{ccc}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}
$$

is a subgroup of G.
2) Let H be a subgroup of a group G and suppose G has group operation "*". For $x \in G$, let

$$
x H x^{-1}=\left\{x * h * x^{-1}: h \in H\right\} .
$$

Define

$$
K=\left\{x \in G: x H x^{-1}=H .\right\}
$$

a) Show that $H \subseteq K$.
b) Prove that K is a subgroup of $G . K$ is called the normalizer of H in G, and is usually denoted by $N_{G}(H)$.
c) Let G be abelian and suppose $H \leq G$. Determine $N_{G}(H)$.
3) Consider S_{n} as the group of all bijections on $\{1,2, \ldots, n\}$.
a) Let $T \subset S_{n}$ be the subset of all bijections ϕ with the property that $\phi(1)=1$. Is T is a subgroup of S_{n} ?
b) Now let $B \subset S_{n}$ be the subset of all bijections ψ with the property that $\psi(1) \neq 1$. Is B a subgroup of S_{n} ?
c) (see the previous question) A subgroup H of a group G is called malnormal if $N_{G}(H)=H$. Prove that S_{3} has a proper malnormal subgroup.
4) (\#14, Chapter 3) Suppose that H is a proper subgroup of \mathbb{Z} and H contains 18, 30, and 40. Determine H.
5) (\#18, Chapter 3) a) Suppose H and K are subgroups of G. Show that $H \cap K$ is also a subgroup of G.
b) Is it always the case that if H and K are subgroups of G then $H \cup K$ is a subgroup of G ? Prove or give a counterexample.

