Math 412/512 Assignment 3

Due Thursday, October 11

1) (\#3, Chapter 4) a) List the elements of the subgroups $\langle 20\rangle$ and $\langle 10\rangle$ in \mathbb{Z}_{30}.
b) Let a be a generator of \mathbb{Z}_{30}. List the elements of the subgroup $\left\langle a^{20}\right\rangle$ and $\left\langle a^{30}\right\rangle$.
2) (\#34, Supplementary Exercises for Chapters 1-4) Suppose that G is a group that has exactly one nontrivial proper subgroup. Prove that G is cyclic and $|G|=p^{2}$ where p is prime.
3) a) Prove that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{5}$ is a cyclic group.
b) Prove that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{6}$ is not a cyclic group.
c) Is $\mathbb{Z}_{49} \oplus \mathbb{Z}_{132}$ a cyclic group? Either prove or give a counterexample.
d) Conjecture when $\mathbb{Z}_{n} \oplus \mathbb{Z}_{m}$ is cyclic. Don't prove your guess, thoughunless you want some extra credit!
4) We know from class that S_{n} is not cyclic as soon as $n \geq 3$, hence not generated by a single element. This problem explores subsets that DO generate S_{n}.
a) Show that S_{3} is generated by the set $\{(12),(13)\}$.
b) Show that S_{n} is generated by the set $\{(12),(13), \ldots,(1 n)\}$. Hint: you may use the fact that S_{n} is generated by transpositions.
