Math 412/512 Assignment 4

Due Thursday, October 20

1) a) If $\sigma \in S_{9}$ is given in array notation by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
5 & 7 & 9 & 4 & 2 & 8 & 1 & 6 & 3
\end{array}\right)
$$

express σ in cycle notation.
b) If $\psi, \phi \in S_{9}, \psi=(194)(2178)(35)$ and $\phi=(387)(26)(19)$, express $\phi \circ \psi$ and $\psi \circ \phi$ in cycle notation. Calculate $|\phi \circ \psi|$.
c) Check whether any of σ, ψ, or ϕ (as defined in parts a) and b)) are elements of A_{9}.
2) If $g \in G$, define the conjugacy class $\mathrm{Cl}(g)$ of g to be the subset of G consisting of all elements of the form $h g h^{-1}$ for $h \in G$. In symbols,

$$
\mathrm{Cl}(g)=\left\{k \in G \mid k=h g h^{-1} \text { for some } h \in G\right\} .
$$

a) If $\sigma=(12) \in S_{3}$, determine $\mathrm{Cl}(\sigma)$.
b) If $g \in \mathcal{Z}(G)$, determine $\mathrm{Cl}(g)$.
c) For which $g \in G$ do we have $\mathrm{Cl}(g) \leq G$? Prove that your answer is correct.
3) (\#46, Chapter 5) Let $H \leq S_{n}$ and suppose the order of H is odd. Show that $H \leq A_{n}$.
4) Recall that D_{n} is the group of rotations and reflections that preserve a regular n-gon.
a) Show that S_{3} is isomorphic to D_{3}.
b) The proof of Cayley's Theorem given in class yields a subgroup of S_{8} that is isomorphic to D_{4}. After labeling the elements of D_{4}, explicitly produce the subgroup given by the proof, i.e., determine all the elements.
5) (\#10, Chapter 6) Let G be a group. Prove that the mapping $\alpha: G \rightarrow G$, $\alpha(g)=g^{-1}$ for all $g \in G$, is an automorphism if and only if G is abelian.

